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Abstract. Spatio-temporal video grounding aims to localize the spatio-
temporal tube in a video according to the given language query. To elim-
inate the annotation costs, we make a first exploration to tackle spatio-
temporal video grounding in a zero-shot manner. Our method dispenses
with the need for any training videos or annotations; instead, it local-
izes the target object by leveraging pre-trained vision-language models
and optimizing within the video and text query during the test time.
To enable spatio-temporal comprehension, we introduce a multimodal
modulation that integrates the spatio-temporal context into both visual
and textual representation. On the visual side, we devise a context-based
visual modulation that enhances the visual representation by propaga-
tion and aggregation of the contextual semantics. Concurrently, on the
textual front, we propose a prototype-based textual modulation to refine
the textual representations using visual prototypes, effectively mitigat-
ing the cross-modal discrepancy. In addition, to overcome the interleaved
spatio-temporal dilemma, we propose an expectation maximization (EM)
framework to optimize the process of temporal relevance estimation and
spatial region identification in an alternating way. Comprehensive ex-
periments validate that our zero-shot approach achieves superior perfor-
mance in comparison to several state-of-the-art methods with stronger
supervision. The code is available at https://github.com/baopj/E3M.
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1 Introduction

Grounding natural language in visual content is a fundamental technique to
bridge the communication between humans and intelligent systems. In this work,
we focus on a challenging visual grounding task named Spatio-Temporal Video
Grounding (STVG) [36, 38]. Given a sentence query, as illustrated in Fig 1, the
goal of STVG is to localize the target object spatially and temporally in an
untrimmed video. This goes beyond aligning a global visual representation with
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1) Ground truth

2a) Spatial inference error

2b) Temporal reasoning error

Query: A man in a suit walks into the room and sits down.Query: A man in a suit walks into the room and sits down.

Fig. 1: 1) Given a natural language query, Spatio-Temporal Video Grounding (STVG)
aims to localize the spatio-temporal video tube described by the query. We for the
first time explore zero-shot STVG which eliminates the need for laborious manual
annotations. 2) A significant challenge in zero-shot STVG lies in the necessity for
joint spatio-temporal reasoning. Examples 2a and 2b illustrate typical grounding errors
caused by failures in spatial and temporal reasoning, respectively.

a textual one, as it requires reasoning about detailed spatio-temporal visual
representation and their association with natural language.

In recent years, the performance of STVG on benchmark datasets has been
improved by the advancement of deep learning techniques [6,8,13,15,31] and the
availability of massively annotated data [36, 38]. However, it is often expensive
and time-intensive to collect the manual annotations, which consist of sentence
queries and bounding box sequences. Moreover, the acquisition of training data
proves to be inaccessible in numerous real-world applications (e.g. due to privacy
concerns [18, 33]). To this end, in this paper, we propose to address the STVG
task in a zero-shot manner, dispensing with the need for any ground-truth labels
for training. To the best of our knowledge, this is the first attempt at zero-shot
STVG in the literature.

Our core idea is to harness the zero-shot capabilities of large-scale pre-trained
vision-language models (VLM) such as CLIP [20] for STVG’s input data, with-
out the need for training on STVG-specific annotated data. Pretrained on mil-
lions of image-text pairs sourced from the internet, the VLMs have recently
demonstrated impressive training-free performance across various computer vi-
sion tasks, including image-text matching [7], image grounding [26], and text-
video generation [19, 35]. However, how to capitalize on the knowledge of such
VLMs for spatio-temporal comprehension in untrimmed videos remains largely
unsolved. A crucial challenge for STVG is that it demands not just image-level
understanding but also the integrated reasoning of spatio-temporal semantics.
For instance, as illustrated in Fig 1, discerning the spatio-temporal tubes “a
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man in a suit walks into the room and sits down” requires reasoning across both
temporal and spatial dimensions along adjacent frames.

To overcome these challenges, we propose a multimodal modulation algo-
rithm to facilitate spatio-temporal comprehension, which augments both the
visual and textual representation by integrating the spatio-temporal contexts.
1) On the visual side, we devise a context-based visual modulation aimed at en-
hancing the visual representation of object instances with contextual semantics.
Specifically, we first propagate the spatial information of object instances to ad-
jacent frames along the temporal dimension via a Kalman filter. Then we adap-
tively aggregate the visual features of these propagated contexts, thereby form-
ing a spatio-temporal representation enriched with comprehensive contextual
information. 2) On the textual front, we propose a prototype-based textual mod-
ulation that complements the textual representation with visual spatio-temporal
semantics, thereby bridging their cross-modal discrepancy. We first identify se-
mantics prototypes from spatio-temporal visual features that closely align with
the sentence semantics. Subsequently, these semantics prototypes are employed
to calibrate the textual features, effectively encapsulating the spatio-temporal
information within the textual domain.

In addition, STVG inherently presents an intertwined spatio-temporal dilemma:
spatial grounding in videos hinges on precise temporal grounding, as the videos
comprise both positive and negative frames in relation to the query. Temporal
missteps can inadvertently result in spatial inference within irrelevant frames, un-
dermining the overall accuracy. Conversely, the effectiveness of temporal ground-
ing also depends on spatial identification, given the presence of multiple irrel-
evant instances in a frame. To handle this intertwined dilemma, we regard the
temporal relevance scores as the latent variables and introduce an expectation-
maximization (EM) framework operating the temporal and spatial grounding in
an alternating paradigm.

Our main contributions can be summarised as follows:

1. We propose a training-free algorithm to address the STVG task in a zero-
shot manner, eliminating the necessity of any training videos or annotations.
To the best of our knowledge, this is the first attempt at zero-shot STVG.

2. To facilitate spatio-temporal reasoning, we propose an Expectation Maxi-
mization Multimodal Modulation (E3M) algorithm, which comprises a context-
based visual modulation, a prototype-based textual modulation, and an EM
optimization in an iterative paradigm.

3. Extensive experiments verify that our zero-shot method outperforms a list
of state-of-the-art methods using stronger supervision on two large-scale
datasets i.e. HC-STVG [38] and VidSTG [36].

2 Related Works

Fully-Supervised STVG. This task of Spatio-Temporal Grounding (STVG)
is first introduced by Zhang et al. [36] and Tang et al. [38]. The fully-supervised
STVG approaches can be classified into two main categories: two-stage pipelines [36–
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38] and one-stage pipelines [8,25,31]. Although delivering promising results, both
types of fully-supervised methods heavily depend on an extensive collection of
labor-intensive bounding box annotations to achieve their performance. This
limits the scalability of these methods to real-world applications.
Weakly-Supervised STVG. In recent years, weakly supervised learning has
achieved significant progress in various areas of computer vision [1, 3, 4, 28, 34].
Several recent works [6, 13] also tackle STVG in a weakly-supervised manner,
which only uses coarse video-level descriptions for training. However, these meth-
ods still require paired video-language data, showing limited applicability in
the open world. Additionally, obtaining training data can be difficult in a wide
range of real-world applications, such as due to privacy concerns. In contrast,
our zero-shot method obviates the requirement for any training videos, thereby
significantly reducing the associated costs of data collection and annotation.
Video Understanding with CLIP. While pretrained on millions of image-text
pairs, vision-language models such as CLIP [20] have recently drawn attention for
video understanding [9,16,17,21,29,30]. Wasim et al. [29] propose a multimodal
prompt tuning for video recognition based on CLIP. Rasheed et al. [21] explore
adapting image-level CLIP features to video data. However, these methods still
rely on collecting massive training data and require time-consuming finetuning
on the video data. Unlike them, our method seamlessly enables the CLIP models
with the capability of spatio-temporal reasoning in a training-free manner.
Zero-Shot Multi-Modal Learning. Training deep learning models with man-
ual supervision demands an extensive amount of annotated data. Therefore,
zero-shot learning [5, 24, 26, 27, 32] has gradually drawn attention in the realm
of multimodal understanding. A cross-modal hashing scheme using CLIP [20]
model is developed in [32]. And Subramanian et al. [26] leverage CLIP model
for zero-shot image grounding. To the best of our knowledge, we are the first to
address the task of spatio-temporal video grounding in a zero-shot manner.

3 E3M for Zero-Shot STVG

3.1 Problem Formulation and Method Overview

Problem Formulation. Given an untrimmed video V = {ft}Tv

t=1 composed
of Tv image frames and a sentence query Q, the goal of the Spatio-Temporal
Video Grounding (STVG) is to localize the spatio-temporal tube B = {bt}tet=ts
described by S. Here bt represents a bounding box in the t-th frame, ts and te
specify the starting and ending boundary of the retrieved object tube, respec-
tively. Existing STVG approaches [25, 31, 36–38] have a significant drawback in
that they necessitate extensive manual annotations for training. These annota-
tions, including the spatio-temporal tubes B and the sentence queries S, are
often expensive and time-consuming to collect, which limits their practicality in
real-world applications. Moreover, acquiring training data can pose challenges in
numerous scenarios, particularly where privacy concerns are involved. To tackle
these limitations, we propose a training-free, zero-shot STVG approach that
eliminates the requirement for ground-truth labels in the training phase.
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Fig. 2: An overview of Expectation-Maximization Multimodal Modulation (E3M). The
E step aims to estimate temporal relevance scores between video frames and sentences,
leveraging spatial grounding results from the M step. Based on the estimated temporal
relevance scores, the M step optimizes spatial grounding, including: a) Context-based
visual modulation, designed to facilitate reasoning among spatio-temporal contexts.
This involves propagating and aggregating the spatio-temporal contexts of object in-
stances using a Kalman filter. b) Prototype-based textual modulation to bridge the
visual-textual discrepancy, where raw textual features are enriched with visual seman-
tics prototypes.

Method Overview. Beyond merely comprehending the video frames at image
level, a critical challenge for STVG involves the integrated reasoning of spatio-
temporal semantics. For instance, as presented in Fig 1, to accurately localize the
query “a man in a suit walks into the room and sits down” necessitates reasoning
across both temporal and spatial dimensions in adjacent frames. Moreover, the
spatial and temporal reasoning are inherently intertwined, with errors in one
potentially propagating to the other.

To this end, as illustrated in Fig 2, we propose an Expectation-Maximization
Multimodal modulation (E3M) algorithm for zero-shot STVG. Specifically, we
introduce an Expectation-Maximization (EM) framework to optimize the tem-
poral and spatial reasoning in an alternating paradigm. The temporal relevance
scores, which represent the relevance between the sentence and each of the video
frames, are regarded as latent variables. In the E step, we estimate the distribu-
tion of temporal relevance scores, leveraging the spatial grounding results from
the M step. Based on the estimated temporal relevance scores, the M step then
optimizes the spatial grounding results with a) context-based visual modulation
and b) prototype-based textual modulation.
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The context-based visual modulation operates on the visual front, aiming to
enable visual reasoning among spatio-temporal contexts. The region informa-
tion of object instances is first propagated along the temporal dimension via a
Kalman filter. Then the visual features of the propagated regions are aggregated
to enhance the object instances with the spatio-temporal contexts. Meanwhile,
on the textual side, we devise the prototype-based textual modulation to bridge
the visual-textual discrepancy. We first identify semantics prototypes from the
visual features that closely align with the sentence. Afterwards, these textual
features are recalibrated by incorporating these visual semantics prototypes.

3.2 M Step: Spatial Grounding with Multimodal Modulation

Assuming the distribution of the temporal relevance γ ∈ RT is estimated in the
Expectation (E) Step (detailed in subsection 3.3), this distribution represents the
relevance between the T video frames and the query Q. Based on the temporal
relevance distribution γ, the Maximization (M) step aims to optimize spatial
grounding results with a joint spatio-temporal understanding. To achieve this, we
devise a multimodal modulation algorithm that integrates context-based visual
modulation and prototype-based textual modulation.

Context-based Visual Modulation. For each frame in the video, we first
employ an off-the-shelf object detector [22] to detect object instances. Assum-
ing that the t-th frame contains Nt object instances, their bounding boxes are
denoted as bit, where i = 1 . . . Nt.

To extract discriminative features for the i-th object instance, we first isolate
the instance bit from the t-th frame ft by blurring its background. Next, we
extract the visual feature vit for f it using the pretrained CLIP visual encoder
ψCLIP, formulated as follows:

f it = ξ(ft, b
i
t), (1)

vit = ψCLIP(f
i
t ). (2)

where ξ represents the blurring operation, and f it denotes the blurred version of
ft with the i-th object instance.

Note that the visual feature derived from Eq. 2 is computed on the single
frame, and thus fails to capture the rich spatio-temporal semantics. To this
end, we design a context-based visual modulation to facilitate visual reasoning
among spatio-temporal contexts, which involves propagating and aggregating
the spatio-temporal contexts of object instances using a Kalman filter.

Specifically, we first approximate the inter-frame displacements of each object
instance using a linear constant velocity model and then can propagate the object
instances {bit} to 2T neighbor frames using a Kalman filter [11]. We define the
state s for each instance as s = [u, v, a, r, u̇, v̇, ȧ]T . Here u and v represent the
horizontal and vertical pixel locations of the instance’s center. And a and r signify
the area and aspect ratio of the instance’s bounding box, respectively. The initial
velocities u̇, v̇, ȧ are set to zero. We then use the Kalman filter optimization [11]
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to predict the correspondence probability of the object instances in adjacent
frames.

With the correspondence probability derived from the Kalman filter, we fi-
nalize the association of the object instances through bipartite graph matching,
a task efficiently solved by Hungarian algorithm [12]. The assignment cost matrix
for the Hungarian algorithm is computed on the Intersection-over-Union (IoU)
metric applied to the bounding boxes of the object instances. In the t′-th frame,
assuming the bounding box associated with the i-th object in the t-th frame is
denoted as bit′ (with bit′ possibly being empty if no bounding box is assigned).

After the propagation of object instances to 2T neighbors along the tempo-
ral dimension, we can obtain the spatio-temporal contexts for the i-th object
instance, namely a list of bounding boxes {bit′} over the (2T +1) frames that are
associated with the i-th object instance, where t− T ≤ t′ ≤ t+ T (i.e. covering
both T frames to the left and right neighbors of the t-th frame). Subsequently,
we modulate the visual features ṽit for the i-th object instance at the t-th frame
by aggregating visual feature of the spatio-temporal contexts {bit′}, written as:

ṽit = δ({vit′}), t− T ≤ t′ ≤ t+ T, (3)

where δ represents the average pooling function over the 2T + 1 frames, and vit′
is computed using Eq. 2 with the bounding box bit′ on the t′-th frame.

Prototype-based Textual Modulation. Given the sentence query Q, we
can extract the sentence feature q using the pretrained CLIP text encoder ϕCLIP
as follows:

q = ϕCLIP(Q). (4)
Consider a composite event described in the sentence query, involving two visual
stages. In the first stage, the visual regions exhibit a high similarity to the
sentence feature q as defined in Eq. 4. However, the second visual stage might be
mistakenly identified as a negative sample to the sentence query due to temporal
difference, even though both stages are integral to the same event.

To handle this challenge posed by the visual-textual semantics discrepancy,
we propose a novel prototype-based textual modulation that refines the textual
representation by capitalizing on complementary semantics prototypes. Here,
we expect that the semantics prototypes satisfy the following two properties. 1)
Exemplarity: each prototype should align closely with the semantic content of the
sentence. 2) Diversity: the prototypes should represent various stages of actions,
so they can capture the evolving nature of visual semantics and complement the
discrepancy in the textual representation.

To accomplish this, we first determine the t∗-th frame in the video, such
that the visual instances at the t∗-th frame align most closely with the sentence
semantics, formulated as:

t∗ = argmaxtγt (5)
Subsequently, we calculate the instance similarities between the sentence feature
q and the modulated visual features {ṽit∗}

Nt∗
i=1 :

sit∗ =
qT ṽit∗

∥q∥ · ∥ṽit∗∥
, i = 1, . . . , Nt∗ (6)
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Algorithm 1 Prototype-based Textual Modulation.
Input: Sentence query q, temporal relevance scores γ1, γ2, . . . , γT , modulated visual

features {ṽit}Nt
i=1, window size W , number of prototypes K

Output: List of prototypes P = {pj}Kj=1 and modulated textual representation q̂
1: Compute the textual representation q through Eq. 4
2: P ← ∅
3: while |P | < K do
4: t∗ ← argmaxt(γt) ▷ Find the temporal index with the highest temporal

relevance score
5: Compute sit∗ and i∗ by Eq.6 and Eq.7
6: for t = max(1, t∗ −W )→ min(T, t∗ +W ) do
7: γt ← 0 ▷ Suppress scores in the neighborhood
8: end for
9: P ← P ∪ {ṽi

∗
t∗}

10: end while
11: Modulate textual representation q by P = {pj}Kj=1 as q̂ via Eq. 9
12: return P and q̂

where Nt∗ denotes the number of the visual instances at the t∗-th frame. Then
the visual instance at the t∗-th frame that showcases the maximum sit∗ value is
designated the semantic prototype, formulated as:

i∗ = argmaxis
i
t∗ (7)

Instead of selecting a single semantic prototype, we propose formulating mul-
tiple semantic prototypes to enrich the diversity. To achieve this, we introduce a
suppression strategy to suppress the temporal relevance scores within the tem-
poral neighbors of t∗ (bounded by a window size of W ), written as:

γ̂t =

{
0, if max(1, t∗ −W ) ≤ t ≤ min(T, t∗ +W ),

γt, otherwise.
(8)

This strategy helps mitigate redundancy by avoiding the repetitive selection of
analogous semantic prototypes.

Based on the suppressed γ̂t, we subsequently repeat the above process and
compute Eq. 5 to 8, until obtaining K semantics prototypes, represented as
{pj}Kj=1. Based on K semantics prototypes {pj}Kj=1 , we modulate the textual
representation with respect to these prototypes as:

q̂ = q +

K∑
j=1

ψCLIP(pj) (9)

where ψCLIP is the pretrained CLIP visual encoder. The prototype-based textual
modulation is summarized in the Algorithm 1.

Spatio-temporal Grounding Results. To identify the object instances
that match the semantics of the sentence query Q, we first compute the cosine
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similarities between the modulated sentence feature q̂ and the modulated visual
feature ṽit for the Nt object instances at each t frame, formulated as

ŝit =
q̂T ṽit

||q̂|| · ||ṽit||
, i = 1 . . . Nt, t = τs . . . τe (10)

where τs, τe represent the start and end point of temporal prediction results
obtained in the E step (detailed in subsection 3.3).

Finally, for the t-th frame, the i∗t -th object instance is selected as the predic-
tion result, where i∗t is defined as:

i∗t = argmaxiŝ
i
t (11)

The corresponding bounding boxes are:

B = {bi
∗
t
t }τet=τs . (12)

3.3 E Step: Temporal Relevance Estimation

For each frame in the video, we first extract the frame-level feature vt using the
visual encoder ψCLIP of the CLIP model as

vt = ψCLIP(ft), (13)

where ft is the t-th frame of the video and 1 ≤ t ≤ Tv. However, directly
computing Eq. 13 as a visual representation for the frame ft encounters two
limitations. Firstly, the presence of multiple irrelevant instances within a frame
can act as noise, detracting from effective semantic matching. Secondly, the lack
of contextual information along the temporal dimension is a significant barrier
to temporal reasoning.

To this end, we first exploit the result of spatio-temporal grounding Eq.12
to blur the irrelevant instances and highlight the positive object instances. Sub-
sequently, the context-based visual modulation is leveraged to extract a spatio-
temporal visual representation for the t-th frame as v∗t using Eq. 3. Then the
temporal relevance score γt between the t-frame and the language query Q can
be computed as

γt =
qT v∗t

||q|| · ||v∗t ||
+

qT vt
||q|| · ||vt||

, 1 ≤ t ≤ Tv, (14)

where q is the textual representation as defined in Eq. 4.
To localize the target temporal moment based on temporal relevance score

γt, we first apply the K-Means algorithm to the visual feature of each frame to
formulate C clusters T = {(τ cs , τ ce )}Cc=1, where each cluster (τ cs , τ

c
e ) represents

an atomic temporal event with the start and end point of τ cs and τ ce . Here to
compute the visual feature for the t-th frame, we first compute the average of
the frame-level visual feature and instance-level spatio-temporal feature as v̂′t,
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then we concatenate the normalized version of v̂′t and the timepoint t as the final
visual feature v′t, formulated as:

v̂′t =
vt + v∗t

2
(15)

v′t = concat
(

v̂′t
||v̂′t||

,
t

Tv

)
(16)

where concat is the concatenation operation.
After obtaining the atomic event set T , we predict the final temporal bound-

ary τ = (τs, τe) by merging the atomic events relevant to Q. Firstly, we compute
the matching score αc for each atomic temporal event as

αc =
1

lc

τc
e∑

t=τc
s

γt (17)

where lc is the temporal length of the c-th atomic event.
Subsequently, we initialize the temporal boundary prediction τ as the atomic

temporal event c∗ = argmaxcα
c with the largest matching score. Then we grad-

ually merge the atomic events c′ that are adjacent to c∗ if

αc∗∪c′ > βαc∗ (18)

where c∗ ∪ c′ is the union of the temporal boundary for c∗ and c′ and β is a
predefined hyperparameter. We continuously update c∗ until there is no adjacent
atomic event eligible to Eq. 18.

4 Experiments

4.1 Datasets and Metrics

Datasets. To evaluate our zero-shot model, we adopt two widely used bench-
marks for the STVG task, i.e. HC-STVG [38] and VidSTG [36]. HC-STVG
dataset is collected from movie scenes and contains 5, 660 untrimmed videos in
multi-person scenes. This dataset is challenging for spatio-temporal grounding
because 57.2% of video clips contain more than 3 people. There are 1, 160 video-
sentence pairs in the testing split. VidSTG dataset comprises a total of 99, 943
sentences describing 80 types of objects appearing in 6, 924 untrimmed videos.
The testing subset has 10, 303 video-sentence pairs. On these two datasets, our
zero-shot method tackles the STVG in a training-free manner, which dispenses
with the training videos and annotations, and directly performs inference on the
testing videos and queries.
Metrics. We follow the standard evaluation protocol [36, 38] and use m_vIoU,
and vIoU@R to assess the performance of spatio-temporal grounding. Specif-
ically, let Si, Su denote the intersection and union between the predicted and
ground-truth frames. The vIoU is calculated by 1

|Su|
∑

t∈Si
IoU(b̂t, bt), where b̂t
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and bt denote the detected and ground-truth bounding box at frame t respec-
tively. The m_vIoU score represents the vIoU score averaged over all testing
videos. And vIoU@R denotes the proportion of data samples in the testing sub-
set with vIoU greater than the threshold R where R ∈ {0.3, 0.5}.

4.2 Implementation Details

The proposed method for zero-shot STVG is training-free and performs ground-
ing via directly optimizing within the input video and query during test time.
We exploit Faster-RCNN [22] pretrained on COCO [14] (with the backbone of
ResNet-50 [10]) as the object detector. The RGB frames of the videos are resam-
pled with a length Tv of 128. We use the CLIP model [20] with the backbone of
ViT-B/32 as the pretrained VLM. The context size 2T +1 for visual modulation
is set to be 21 i.e. T = 10. The prototype number K for textual modulation
is set to be 3 and W is set to be 3. The EM epoch number is set to 2. More
implementation details can be referred to the supplement.

4.3 Performance Comparison

Existing STVG approaches are generally divided into two categories: fully and
weakly supervised learning. Both types depend on extensive datasets with corre-
sponding annotations for training. Specifically, fully-supervised methods require
comprehensive annotations of sentence queries and bounding box sequences,
whereas weakly-supervised ones need videos paired with sentence queries. In
contrast, our proposed E3M framework dispenses the need for training videos or
annotations, introducing a zero-shot approach to STVG. As we are the first to
explore zero-shot STVG, we further carefully adapt the state-of-the-art zero-shot
image grounding method i.e. ReCLIP [26] and RedCircle [24] to STVG (more
details can be referred to the supplementary material) for comparative analysis.
Table 1 presents a comparison of our E3M against these advanced methods on
the HC-STVG and VidSTG datasets, which illustrates the following findings.

1) E3M outperforms weak supervised methods. Without specific train-
ing on STVG data, our E3M approach exceeds the state-of-the-art weakly-
supervised method such as Vis-Ctx [23] and Winner [13] on HC-STVG and
VidSTG (Declarative Sentence) significantly. For instance, on HC-STVG, the
metric vIoU@0.5 of E3M is more than 75% higher than Winner. And our method
achieves a similar grounding accuracy to Winner on VidSTG (Interrogative Sen-
tence). This shows the promise to exploit the pretrained vision-language models
for STVG, thereby bypassing the intensive training on annotated STVG data.

2) E3M’s superiority in zero-shot approaches. The innovative use of
expectation-maximization multimodal modulation which enhances spatio-temporal
understanding in video data, allows E3M to significantly outperform other lead-
ing zero-shot methods, including ReCLIP [26] and RedCircle [24]. This under-
scores E3M’s advanced capabilities in a zero-shot context.

3) E3M competes with some fully-supervised methods. Our E3M
method also shows comparable results to some fully-supervised methods. For
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Table 1: Performance comparisons of the state-of-the-art on the HC-STVG and Vid-
STG test set. Full, Weak, and ZS denote fully-supervised, weak-supervised, and zero-
shot learning settings respectively.

Sup Method HC-STVG VidSTG (Declarative Sentence) VidSTG (Interrogative Sentence)
m_vIoU vIoU@0.3 vIoU@0.5 m_vIoU vIoU@0.3 vIoU@0.5 m_vIoU vIoU@0.3 vIoU@0.5

Full

STGVT [38] 18.15 26.81 9.48 21.62 29.80 18.94 − − −
STVGBert [25] 20.42 29.37 11.31 23.97 30.91 18.39 22.51 25.97 15.95
TubeDETR [2] 32.40 49.80 23.50 30.40 42.50 28.20 25.70 35.70 23.20
STCAT [8] 35.09 57.67 30.09 33.14 46.20 32.58 28.22 39.24 26.63

Weak
AWGU [6] 8.20 4.48 0.78 8.96 7.86 3.10 8.57 6.84 2.88

Vis-Ctx [23] 9.76 6.81 1.03 9.34 7.32 3.34 8.69 7.18 2.91
Winner [13] 14.20 17.24 6.12 11.61 14.12 7.40 10.23 11.96 5.46

ZS

Random 3.91 0.86 0.09 3.13 0.40 0.00 3.00 0.44 0.02
RedCircle [24] 9.15 7.76 1.55 8.56 7.61 0.93 9.04 8.51 1.47
ReCLIP [26] 14.36 18.28 4.91 14.21 17.54 7.86 8.36 7.96 2.34
E3M (Ours) 19.11 29.40 10.60 16.21 20.47 11.91 10.61 12.20 5.44

Query

Video

The man in the hat goes to the man in the blue suit and hands him something.Query

Video

The man in the hat goes to the man in the blue suit and hands him something.

Query

Video

The woman in the purple turban shakes something in her hand, puts it in the woman's bag, and then zipped it.Query

Video

The woman in the purple turban shakes something in her hand, puts it in the woman's bag, and then zipped it.

Fig. 3: Qualitative analysis on HC-STVG datasets. The red boxes denote the prediction
results of our zero-shot methods, while the blue ones represent the ground truth.

instance, on HC-STVG and VidSTG (Declarative Sentence), the performance
of our E3M is comparable to the fully-supervised method STGVT [38], despite
STGVT employing intensive training on the fully-annotated data.

4.4 Qualitative Analysis

Fig. 3 presents the qualitative results of our E3M on HC-STVG dataset. It is
noteworthy that E3M, even in a zero-shot setting, successfully identifies the tar-
get spatio-temporal tubes described by complicated sentences amidst a cluttered
background. This includes challenging scenarios where the target tube occupies
only a brief duration and the video frames contain unrelated objects and people.

4.5 Ablation Studies

To investigate the effectiveness of the proposed algorithms, here we conduct
ablation studies on the HC-STVG dataset.
The effect of each module. Table 2 investigates the effect of the main modules
by evaluating their impact when each is removed. 1) Visual modulation: To
exclude visual modulation, the visual features are used directly as defined in Eq. 2
without context-based modulation. 2) Textual modulation: we use the original
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Table 2: The effect of each module i.e. visual modulation (visual mod.), textual
modulation (textual mod.), and EM.

visual mod. textual mod. EM m_vIoU vIoU@0.3 vIoU@0.5

✓ ✓ ✓ 19.11 29.40 10.60
✓ ✓ ✗ 17.21 25.26 8.97
✓ ✗ ✓ 18.76 28.36 9.31
✗ ✓ ✓ 17.05 24.66 7.41
✗ ✗ ✓ 16.41 22.41 5.95
✗ ✗ ✗ 15.20 19.91 5.00

Table 3: The impact of each module by replacing its variant.

visual and texutal mod. m_vIoU vIoU@0.3 vIoU@0.5

full 19.11 29.40 10.60
full w/ short context 17.62 27.41 7.93
full w/ single prototype 18.80 28.79 9.83
full w/ past context 18.27 27.33 9.57
full w/ future context 18.09 27.16 9.14
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Fig. 4: Ablation study on context size T .

18.84 

19.31 

19.92 
20.00 19.98 

20.09 20.05 

18.5

19.0

19.5

20.0

20.5

0 1 2 3 4 5 6

a
v
g
. 

v
Io

U
@

{0
.3

, 
0

.5
}

K

Fig. 5: Ablation study on proto. size K.

textual features as described in Eq. 4 to replace textual modulation. 3) EM
algorithm: To drop the EM algorithm, we directly apply the temporal grounding
and then use the initial temporal localization results for spatial grounding. The
findings reveal that excluding any of these modules (denoted by a cross symbol
in the respective column) significantly diminishes the overall performance.

Table 3 provides a deeper analysis of the impact of these modules by sub-
stituting them with different variants: 1) full with short context: configuring
the context size for visual modulation to 1, i.e. only considering the past and
future one frame, 2) full with single prototype: using solely one prototype for
textual modulation. 3) full with past context: exclusively utilizing past context
for visual modulation, 4) full with future context: only using future context for
visual modulation. We observe that substituting the long-range visual context
with the short context in the visual modulation leads to a noticeable decrease in
grounding accuracy. However, it still significantly outperforms the variant lack-
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Table 4: The impact of backbone architecture.

backbone m_vIoU vIoU@0.3 vIoU@0.5

RN-50 18.29 26.72 10.30
RN-50X4 18.66 28.28 10.43
ViT-B/32 19.11 29.40 10.60

ing visual modulation entirely. This confirms the critical role of visual context in
facilitating spatio-temporal comprehension. Furthermore, when dropping either
the past or future context, there is about a point decrease in each metric, which
shows both the past and future context should be modeled. Replacing multiple
prototypes with a single prototype in the textual modulation results in a per-
formance decline of approximately one point, underscoring the need for textual
modulation with multiple semantics prototypes.
Context size T for visual modulation. The visual modulation enhances the
visual representation with 2T + 1 visual contexts, with the hyperparameter T
playing a crucial role in visual modulation. Fig. 4 presents the impact of T on
the performance of STVG, where we use the average of “vIoU@R” with R =
{0.3, 0.5} as the evaluation metric. The grounding accuracy improves gradually
as T increases when T is less than 10. After T is larger than 10, the model’s
accuracy reaches a point of saturation.
Prototype size K for textual modulation. Fig. 5 studies the influence of
hyperparameter K which denotes the prototype size for textual modulation.
The grounding accuracy first increases as K becomes larger, which verifies the
effectiveness of textual modulation with multiple semantics prototypes. When
K > 3, the performance gradually saturates, showcasing that when setting K =
3 can provide sufficient spatio-temporal information for textual modulation.
Backbone architecture. Table 4 compares the performance of zero-shot STVG
using CLIP of different backbone architecture i.e. RN50, RN50X4, and ViT-
B/32. The performances of zero-shot STVG using any of them are satisfactory
and evidently surpasses that of the state-of-the-art weakly-supervised methods
in Table 1. This shows the adaptability of the proposed E3M method.

5 Conclusion

This paper explores spatio-temporal video grounding in a zero-shot setting for
the first time. To enable spatio-temporal reasoning, we propose an Expectation-
Maximization Multimodal Modulation (E3M) algorithm which integrates both
prototype-based textual modulation and context-based visual modulation. Our
E3M dispenses with the need for any training videos or annotations and localizes
the target object by optimizing within the video and text query during the test
time. Experiments demonstrate that our zero-shot method achieves competitive
results in comparison to several methods that rely on stronger supervision on
large-scale benchmarks.



E3M: Zero-Shot Spatio-Temporal Video Grounding 15

Acknowledgements

This work was carried out at Rapid-Rich Object Search (ROSE) Lab, School
of Electrical & Electronic Engineering, Nanyang Technological University. This
research is supported by the NTU-PKU Joint Research Institute (a collaboration
between the Nanyang Technological University and Peking University that is
sponsored by a donation from the Ng Teng Fong Charitable Foundation).

References

1. Ahn, J., Kwak, S.: Learning pixel-level semantic affinity with image-level supervi-
sion for weakly supervised semantic segmentation. In: CVPR (2018) 4

2. Antoine Yang, Antoine Miech, J.S.I.L., Schmid, C.: Tubedetr: Spatio-temporal
video grounding with transformers. In: CVPR (2022) 12

3. Bao, P., Shao, Z., Yang, W., Ng, B.P., Er, M.H., Kot, A.C.: Omnipotent distil-
lation with llms for weakly-supervised natural language video localization: When
divergence meets consistency. In: AAAI (2024) 4

4. Bao, P., Xia, Y., Yang, W., Ng, B.P., Er, M.H., Kot, A.C.: Local-global multi-modal
distillation for weakly-supervised temporal video grounding. In: AAAI (2024) 4

5. Bao, P., Yang, W., Ng, B.P., Er, M.H., Kot, A.C.: Cross-modal label contrastive
learning for unsupervised audio-visual event localization. In: AAAI (2023) 4

6. Chen, J., Bao, W., Kong, Y.: Activity-driven weakly-supervised spatio-temporal
grounding from untrimmed videos. In: ACM MM (2020) 2, 4, 12

7. Jiang, K., He, X., Xu, R., Wang, X.E.: Comclip: Training-free compositional image
and text matching. In: NAACL (2024) 2

8. Jin, Y., Li, Y., Yuan, Z., Mu, Y.: Embracing consistency: A one-stage approach
for spatio-temporal video grounding. In: NeurIPS (2022) 2, 4, 12

9. Ju, C., Han, T., Zheng, K., Zhang, Y., Xie, W.: Prompting visual-language models
for efficient video understanding. In: ECCV (2022) 4

10. Kaiming He, Xiangyu Zhang, S.R., Sun, J.: Deep residual learning for image recog-
nition. In: CVPR (2016) 11

11. Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal
of Basic Engineering (2011) 6

12. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistics (1955) 7

13. Li, M., Wang, H., Zhang, W., Miao, J., Zhao, Z., Zhang, S., Ji, W., Wu, F.: Winner:
Weakly-supervised hierarchical decomposition and alignment for spatio-temporal
video grounding. In: CVPR (2023) 2, 4, 11, 12

14. Lin, T.Y., Maire, M., Belongie, S.J., et al.: Microsoft coco: Common objects in
context. In: ECCV (2014) 11

15. Lin, Z., Tan, C., Hu, J., Jin, Z., Ye, T., Zheng, W.: Collaborative static and dynamic
vision-language streams for spatio-temporal video grounding. In: CVPR (2023) 2

16. Liu, R., Huang, J., Li, G., Feng, J., Wu, X., Li, T.H.: Revisiting temporal modeling
for clip-based image-to-video knowledge transferring. In: CVPR (2023) 4

17. Luo, D., Huang, J., Gong, S., Jin, H., Liu, Y.: Towards generalisable video moment
retrieval: Visual-dynamic injection to image-text pre-training. In: CVPR (2023) 4

18. Mirshghallah, F., Taram, M., Vepakomma, P., Singh, A., Raskar, R., Esmaeilzadeh,
H.: Privacy in deep learning: A survey. arXiv preprint arXiv:2004.12254 (2020) 2



16 Peijun Bao et al.

19. Peng, B., Chen, X., Wang, Y., Lu, C., Qiao, Y.: Conditionvideo: Training-free
condition-guided text-to-video generation. In: AAAI (2024) 2

20. Radford, A., Kim, J.W., Hallacy, C., et al.: Learning transferable visual models
from natural language supervision. In: ICML (2021) 2, 4, 11

21. Rasheed, H.A., Khattak, M.U., Maaz, M., Khan, S., Khan, F.S.: Fine-tuned clip
models are efficient video learners. In: CVPR (2023) 4

22. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster r-cnn: Towards real-time object
detection with region proposal networks. TPAMI (2015) 6, 11

23. Shi, J., Xu, J., Gong, B., Xu, C.: Not all frames are equal: Weakly-supervised video
grounding with contextual similarity and visual clustering losses. In: CVPR (2019)
11, 12

24. Shtedritski, A., Rupprecht, C., Vedaldi, A.: What does clip know about a red
circle? visual prompt engineering for vlms. In: CVPR (2023) 4, 11, 12

25. Su, R., Xu, Q.Y.D.: Stvgbert: A visual-linguistic transformer based framework for
spatio-temporal video grounding. In: ICCV (2021) 4, 12

26. Subramanian, S., Merrill, W., Darrell, T., Gardner, M., Singh, S., Rohrbach, A.:
Reclip: A strong zero-shot baseline for referring expression comprehension. In: ACL
(2022) 2, 4, 11, 12

27. Tiong, A.M.H., Li, J., Li, B.A., Savarese, S., Hoi, S.C.H.: Plug-and-play vqa: Zero-
shot vqa by conjoining large pretrained models with zero training. In: EMNLP
Findings (2022) 4

28. Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant at-
tention mechanism for weakly supervised semantic segmentation. In: CVPR (2020)
4

29. Wasim, S.T., Naseer, M., Khan, S., Khan, F.S., Shah, M.: Vita-clip: Video and
text adaptive clip via multimodal prompting. In: CVPR (2023) 4

30. Xing, J., Wang, M., Hou, X., Dai, G., Wang, J., Liu, Y.: Multimodal adaptation
of clip for few-shot action recognition. In: CVPR (2023) 4

31. Yang, A., Miech, A., Sivic, J., Laptev, I., Schmid, C.: Tubedetr: Spatio-temporal
video grounding with transformers. In: CVPR (2022) 2, 4

32. Yu, H., Ding, S., Li, L., Wu, J.: Self-attentive clip hashing for unsupervised cross-
modal retrieval. In: MM Asia (2022) 4

33. Zhang, G., Liu, B., Zhu, T., Zhou, A., Zhou, W.: Visual privacy attacks and de-
fenses in deep learning: a survey. Artificial Intelligence Review (2022) 2

34. Zhang, R., Wang, S., Duan, Y., Tang, Y., Zhang, Y., Tan, Y.P.: Hoi-aware adaptive
network for weakly-supervised action segmentation. In: IJCAI (2023) 4

35. Zhang, Y., Wei, Y., Jiang, D., Zhang, X., Zuo, W., Tian, Q.: Controlvideo:
Training-free controllable text-to-video generation. ArXiv (2023) 2

36. Zhu Zhang, Zhou Zhao, Y.Z.Q.W.H.L., Gao, L.: Where does it exist: Spatio-
temporal video grounding for multi-form sentences. In: CVPR (2020) 1, 2, 3,
4, 10

37. Zhu Zhang, Zhou Zhao, Z.L.B.H., Yuan, J.: Object-aware multi-branch relation
networks for spatio-temporal video grounding. In: IJCAI (2021) 3, 4

38. Zongheng Tang, Yue Liao, S.L.G.L.X.J.H.J.Q.Y., Xu, D.: Human-centric spatio-
temporal video grounding with visual transformers. In: TCSVT (2021) 1, 2, 3, 4,
10, 12



Supplements for E3M: Zero-Shot Spatio-Temporal
Video Grounding with Expectation-Maximization

Multimodal Modulation

Peijun Bao1B, Zihao Shao2, Wenhan Yang3, Boon Poh Ng1, and Alex C. Kot1

1Nanyang Technological University
2Peking University 3Peng Cheng Laboratory

peijun001@e.ntu.edu.sg, zh.s@pku.edu.cn, yangwh@pcl.ac.cn

1 Additional Ablation Studies

Convergence of EM Iteration. Fig. 1 investigates the convergence of EM
iteration on the HC-STVG dataset, by evaluating the grounding accuracy as
the EM epoch number increases. We employ the average vIoU@R where R =
{0.3, 0.5} as the evaluation metric. The grounding accuracy gradually improves
as the EM algorithm iterates. Remarkably, the algorithm converges after just 2
epochs, with the average vIoU@R stabilizing at approximately 20.
Influence of Neighbor Size W . In Fig 2, we present ablation studies on
the hyperparameter W , which denotes the neighbor size for suppression in the
textual modulation. The metric used for evaluation is the average vIoU@R for
R = {0.3, 0.5}. As illustrated, the grounding accuracy shows a gradual increase
as W becomes larger, with satisfactory performance achieved when W ≥ 2.
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Fig. 1: Ablation studies on EM epochs.
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Fig. 2: Ablation studies on W .

Impact of Clustering Number C. Table 1 summarizes the impact of using
varying values of clustering number C on the HC-STVG dataset. Empirically,
our results indicate that utilizing a clustering number C in the range of 4 or 5
yields optimal performance. Furthermore, our experiments show that a C value
outside this range leads to suboptimal performance. However, it still outperforms
the state-of-the-art weakly-supervised method Winner [1] and zero-shot method
ReCLIP [3] with a clear margin.

B Corresponding authors.
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Method m_vIoU vIoU@0.3 vIoU@0.5

Winner [1] 14.20 17.24 6.12
ReCLIP [3] 14.36 18.28 4.91

E3M (C = 3) 18.29 26.12 7.76
E3M (C = 4) 19.11 29.40 10.60
E3M (C = 5) 18.21 27.67 11.12
E3M (C = 6) 16.92 25.26 9.66

Table 1: Ablation studies on clustering number C.

2 Additional Qualitative Analysis

Qualitative Comparisons. Fig. 3 and 4 provide qualitative comparisons among
ground truth, ReCLIP [3], and our E3M method. The examples in both fig-
ures illustrate the advantages of our method in temporal-wise and spatial-wise
grounding, respectively. We note that grounding errors can be attributed to two
primary factors: 1) localizing the incorrect temporal boundary, such as failures
to accurately pinpoint the event as illustrated in Fig. 3, and 2) localizing the
wrong object, for instance, struggling to identify the correct person within a
crowd described by the sentence as shown in Fig. 4. And our E3M method can
effectively filter out these grounding errors that appear in the ReCLIP.

3 Additional Implementation Details

E3M. The clustering number C is set to be 4 for HC-STVG and 3 for VidSTG.
We set the β in Eq.18 as 1.0 for HC-STVG and 0.9 for VidSTG dataset.
Baselines. Existing STVG approaches are generally categorized into two groups:
fully-supervised and weakly-supervised learning, both relying on extensive video
data with corresponding annotations for training. As our work is pioneering to
explore zero-shot STVG, we carefully adapt the state-of-the-art zero-shot image
grounding method, namely ReCLIP [3] and RedCircle [2], to STVG for compar-
ative analysis. We first employ the state-of-the-art zero-shot temporal grounding
method SPL [4] as the temporal grounding method. After the acquisition of the
temporal grounding results, we apply the spatial grounding to each frame that is
inferred as positive by the temporal grounding method. Subsequently, we select
the object identified by the zero-shot spatial grounding method at each frame as
the prediction results. Our implementation employs the same hyperparameter
settings as outlined in the original papers [2, 3].
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Query

GT

The woman in the white hat puts her contents in the basket and then takes them out.

Baseline

E3M (Ours)

Query

GT

The woman next to the man in the blue-red dress turns and then turns to talk to the man.

Baseline

E3M (Ours)

Query

GT

The woman in blue clothes raises her arms, says a few words, and lowers her arms.

Baseline

E3M (Ours)

Fig. 3: Qualitative comparisons between E3M and ReCLIP highlight the superiority
of our method in temporal grounding. The red bounding boxes represent the prediction
results of our zero-shot method E3M, the green ones denote the results of ReCLIP [3],
and the blue ones represent the ground truth.
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Query

GT

The man in white clothes gestures with one hand and talks to the opposite person.

Baseline

E3M (Ours)

Query

GT

The man in the hat turns around, takes the woman next to him and walks next to the big stool.

Baseline

E3M (Ours)

Query

GT

The fat man lowers his head to light the cigarette for a sip, and looks forward.

Baseline

E3M (Ours)

Fig. 4: Qualitative comparisons between E3M and ReCLIP highlight the superiority
of our method in spatial grounding. The red bounding boxes represent the prediction
results of our zero-shot method E3M, the green ones denote the results of ReCLIP [3],
and the blue ones represent the ground truth.
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