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Abstract

This paper for the first time leverages multi-modal videos
for weakly-supervised temporal video grounding. As label-
ing the video moment is labor-intensive and subjective, the
weakly-supervised approaches have gained increasing atten-
tion in recent years. However, these approaches could inher-
ently compromise performance due to inadequate supervision.
Therefore, to tackle this challenge, we for the first time pay
attention to exploiting complementary information extracted
from multi-modal videos (e.g., RGB frames, optical flows),
where richer supervision is naturally introduced in the weakly-
supervised context. Our motivation is that by integrating dif-
ferent modalities of the videos, the model is learned from
synergic supervision and thereby can attain superior general-
ization capability. However, addressing multiple modalities
would also inevitably introduce additional computational over-
head, and might become inapplicable if a particular modality
is inaccessible. To solve this issue, we adopt a novel route:
building a multi-modal distillation algorithm to capitalize on
the multi-modal knowledge as supervision for model train-
ing, while still being able to work with only the single modal
input during inference. As such, we can utilize the benefits
brought by the supplementary nature of multiple modalities,
without undermining the applicability in practical scenarios.
Specifically, we first propose a cross-modal mutual learning
framework and train a sophisticated teacher model to learn
collaboratively from the multi-modal videos. Then we identify
two sorts of knowledge from the teacher model, i.e., tempo-
ral boundaries and semantic activation map. And we devise a
local-global distillation algorithm to transfer this knowledge to
a student model of single-modal input at both local and global
levels. Extensive experiments on large-scale datasets demon-
strate that our method achieves state-of-the-art performance
with/without multi-modal inputs.

Introduction
Given a natural language query and an untrimmed video,
the task of temporal video grounding (Gao et al. 2017; Kr-
ishna et al. 2017) aims to temporally localize the video mo-
ment described by the language query. It is one of the most
fundamental tasks in video understanding and has a wide
range of real-world applications (Qi et al. 2021; Bao et al.
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Figure 1: 1) Due to lacking temporal boundary annotations,
weakly-supervised temporal video grounding faces ineffec-
tive supervision compared to fully-supervised scenarios. 2)
We alleviate this issue by exploiting complementary multi-
modal videos as an auxiliary supervisory signal. We propose
a local-global multi-modal distillation algorithm that trans-
fers the multi-modal knowledge from the teacher model to a
single-modal student model at local and global levels.

2023; Sreenu and Durai 2019; Zhu et al. 2021), such as
video localization, video summarization, as well as video
surveillance analysis. While achieving remarkable perfor-
mance, the fully-supervised temporal video grounding (Liu
et al. 2018; Zhang et al. 2019a,b, 2020a; Bao, Zheng, and Mu
2021) necessitates laborious manual annotations of temporal
moment boundaries. Consequently, the weakly-supervised
setting (illustrated in Fig 1) has recently received growing
attention (Chen et al. 2020; Tan et al. 2021; Lin et al. 2020;
Zheng et al. 2022a,b), where only paired videos and natural
language queries are required during training. However, the
grounding capability of the existing weakly-supervised meth-
ods is still unsatisfactory and lags behind the fully-supervised
counterparts because the incomprehensive annotations do not
provide sufficient supervisory signals.

Different from the prevailing works on weakly-supervised
learning only consider RGB frames for video features (Gao
et al. 2019; Chen et al. 2020; Lin et al. 2020; Tan et al. 2021;
Zheng et al. 2022a,b), we pay attention to exploring the po-
tential of using different modalities of the videos (e.g., RGB
frames, optical flow, audio), whose complementary informa-



tion can naturally result in the improvement of the ground-
ing accuracy. For instance, the features of RGB frames can
capture useful appearances to align the objects and scenes
between the sentence and video, while the explicit modeling
of the motion is absent. Besides, they are also sensitive to
occlusions and lighting conditions. Comparatively, optical
flow features can complement this with richer motion infor-
mation, which facilitates action understanding and improved
robustness to occlusions and lighting changes. Therefore,
intuitively, it is beneficial to utilize the synergic cues from
the multi-modalities of the videos instead of only tackling
RGB frames. However, while integrating multiple modali-
ties† can improve the generalization capability and robustness
of the model, it also brings about potential negative impacts.
First, the additionally introduced model parameters lead to
increased computational costs. Second, the use of multiple
modalities limits the practicability of the method, both for
computational consideration (e.g., the heavy computational
burden of optical flows (Dosovitskiy et al. 2015; Lucas and
Kanade 1981)) and from the perspective of data availability
(e.g., audio modality is often missed in surveillance videos).

To this end, we develop a novel technical route to exploit
multi-modal data more effectively and flexibly: 1) training
the model with the multi-modal complementary input; 2) in-
ference using only single-modal data. As such, the method
successfully leads to an improved modeling capacity while
maintaining practicality. As illustrated in Fig 1, our idea
is to first train a sophisticated teacher model to collabora-
tively learn from the multi-modal videos. Subsequently, this
teacher model is treated as a pseudo annotator to provide a
student model with the ground truth of temporal boundaries,
as well as the underlying semantic structure between the
video and language. Because the student model only digests
single-modal videos as input, it maintains the computational
cost and eliminates additional multi-modal videos during
inference. To the best of our knowledge, this is the first at-
tempt of distilling the multi-modal knowledge to alleviate the
challenge of weak supervision in the literature of temporal
video grounding. Compared with the conventional knowl-
edge distillation in fully / semi-supervised setting (Hinton,
Vinyals, and Dean 2015; Tarvainen and Valpola 2017; Qiao
et al. 2018), the case in our situation is more difficult, as the
insufficient supervisory signals from incomplete annotations
in our weakly-supervised context inherently pose a challenge.

Specifically, 1) we first devise a cross-modal mutual learn-
ing framework to train the teacher model under the scenarios
of inputting multi-modal videos. The supplemental cues from
different modality sources are leveraged to explicitly compen-
sate for the errors of each single modality. 2) We then identify
two sorts of knowledge from the teacher model, i.e., temporal
boundaries and semantic activation map. And we propose a
multi-modal distillation algorithm to transfer this knowledge
to a student model of single-modal input. At the local level,
the semantic activation maps which denote the underlying
similarity of video snippets and language are enforced to be

†For clarity, single- / multi-modality in this paper refers specif-
ically to the videos, although temporal video grounding itself is a
multi-modal task in the definition.

consistent between the teacher and student model. At the
global level, the predictions of temporal boundaries from
the teacher model are regarded as pseudo labels to train the
student model. In this way, the student model can exploit
the extra knowledge from the multi-modal videos to han-
dle the issue of weak supervisory signals, while keeping the
single-modal videos as the input. 3) In addition, we propose a
local-global contrastive learning algorithm for a single-modal
baseline, where local and global levels of contrastive learning
are devised to align the semantics of language and videos.
This single-modal baseline model can still outperform state-
of-the-art weakly-supervised methods even without touching
any multi-modal videos during training or inference.

Our contributions are summarized as follows: 1) To the
best of our knowledge, we are the first to make use of multi-
modal videos to mitigate the inadequate supervision problem
in weakly-supervised temporal video grounding. A multi-
modal distillation algorithm is proposed to transfer knowl-
edge to a single-modal student model at both local and global
levels. 2) As a byproduct, we also for the first time explore
the weakly-supervised temporal video grounding with the
input of multi-modal videos. A mutual learning algorithm
is crafted to collaboratively learn from different modality
sources and compensate each other for reduced grounding
errors. 3) We design a novel single-modal baseline with local-
global contrastive learning, avoiding the utilization of multi-
modal videos in either training or inference. 4) Extensive
experiments on two large-scale datasets show that our meth-
ods achieve state-of-the-art results, regardless of whether
employing multi-modal inputs.

Related Works
Fully-supervised temporal video grounding. The task of
temporal video grounding is first introduced by Gao et al.
(2017) which aims to determine the start and end time points
of moment given by a query sentence. Liu et al. (2018) advise
applying attention mechanism to highlight the crucial part of
visual features. An event propagation network is developed
in (Bao, Zheng, and Mu 2021) to localize video moments that
are semantically related and temporally coordinated. While
obtaining promising performance (Mun, Cho, and Han 2020;
Wang, Ma, and Jiang 2020; Bao and Mu 2022; Zhang et al.
2019a, 2020a), these fully-supervised methods rely on the
labor-intensive annotations of the temporal boundaries.
Weakly-supervised temporal video grounding. Existing
works (Gao et al. 2019; Zheng et al. 2022a,b; Bao et al. 2024;
Chen et al. 2020; Lin et al. 2020; Tan et al. 2021) on weakly-
supervised temporal video grounding take the RGB frames of
the video as the input. Early works (Mithun, Paul, and Roy-
Chowdhury 2019; Tan et al. 2021) use joint visual-semantic
embeddings and text-guided attention to avoid laborious tem-
poral boundary annotations. Recently, Zheng et al. (2022a)
design contrastive proposal learning to distinguish the posi-
tive video segments from the highly confusing ones within
the same video. Different from existing works only consid-
ering RGB frames, we innovate to capitalize on synergic
multi-modal videos as assistive training guidance to handle
the dilemma of incomprehensive annotations.
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Figure 2: Overview of Local-Global Multi-Modal Distillation (MMDist). It comprises 1) a single-modal baseline using local-
global contrastive learning, 2) a single-modal student model with a multi-modal distillation algorithm at local and global level,
and 3) a multi-modal teacher model via cross-modal mutual learning. The proposal candidates that are in dark green represent
the ones predicted as positive.

Multi-modal temporal video grounding. The only work in
temporal video grounding that employs multi-modal videos
is (Chen, Tsai, and Yang 2021). Their motivation is con-
centrated at the feature level: using multi-modal videos to
augment the feature representation in the fully-supervised
setting. We highlight that our motivation and formulation in
the weakly-supervised context are distinct from theirs. Our
goal to use multi-modal lies in supervision level i.e. address-
ing the deficient supervision problem by taking multi-modal
as auxiliary supervision. This particular problem is unique
to our weakly-supervised scenario and has not appeared in
the fully-supervised counterpart. Besides, our formulation di-
verges from (Chen, Tsai, and Yang 2021) in that we only take
multi-modal videos as extra supervision and do not require
the multi-modal input during inference.
Knowledge distillation. Knowledge distillation is originally
innovated in (Hinton, Vinyals, and Dean 2015) to transfer the
knowledge acquired by a large, complex model to a smaller,
more efficient model. In recent years, knowledge distillation
is further applied in domain adaptation (Chen et al. 2019),
zero-shot learning (Nayak et al. 2019), and multi-modal learn-
ing (Gupta, Hoffman, and Malik 2015; Wang et al. 2020). The
most related works to ours are (Yu, Liu, and Chan 2021; Gar-
cia, Morerio, and Murino 2018), which transfer knowledge
of skeleton (Yu, Liu, and Chan 2021) or depth frames (Gar-
cia, Morerio, and Murino 2018) to a student network of the
RGB modality respectively. In contrast to them, we focus on
the temporal grounding, and the identified local and global
semantic knowledge to transfer is specific to our task.

Local-Global Multi-Modal Distillation
Method Overview
The proposed method Local-Global Multi-Modal Distilla-
tion (MMDist) explores leveraging multi-modal videos for
weakly-supervised temporal video grounding (TVG). Our
goal is not only to enhance the model with multi-modal in-

put but further to take the multi-modal videos as auxiliary
supervisory guidance for training the single-modal model,
with the anticipation that it can mitigate the issue of deficient
supervision. As illustrated in Fig 2, our methods consist of
three parts: a single-modal baseline, a multi-modal teacher
model, and a single-modal student model.

1) The single-modal baseline takes only single-modal
videos as input. We propose local and global contrastive learn-
ing to align the semantic content of videos and sentences,
simultaneously considering both local and global viewpoints.

2) The multi-modal teacher model collaboratively learns
from multiple modality sources in videos. We devise cross-
modal mutual learning to enforce the consistency of the se-
mantic activation maps across different modalities. For each
modality of the video, we first compute the semantic activa-
tion map between video snippets and query sentence respec-
tively. Then the discrepancies arising from one modality are
compensated for through the integration of the other, leading
to enhanced overall performance and error mitigation.

3) The single-modal student model has the same network
architecture design as the baseline model, but it receives ad-
ditional supervision from the teacher model during training.
More specifically, the multi-modal teacher model predicts
more accurate temporal boundaries, whose ground truth is
unknown in a weakly-supervised learning context. Also, the
teacher model provides a better estimation of semantic ac-
tivation maps, unveiling the intrinsic semantic relationship
between language and videos. To this end, we design global-
level and local-level distillation algorithms, which encour-
age the student model to mimic the predictions of temporal
boundaries and semantic activation maps respectively. The
student model is then trained with the supervisory signals
from the multi-modal videos while still keeping the single-
modal videos as the input during the inference stage.

Here we highlight our innovations. 1) We design local-
global contrastive learning for the single-modal baseline.



Note that this baseline can beat state-of-the-art methods, with-
out touching multi-modal videos during both training and
inference. 2) Our student model is the first in the literature
to capitalize on multi-modal videos to handle the insufficient
supervision obstacle. And we craft a multi-modal distilla-
tion algorithm to distill multi-modal knowledge at both local
and global scopes. 3) A novel cross-modal mutual learning
framework is proposed for the teacher model to mutually
compensate for the errors introduced by any single modality.

Contrastive Learning at Local and Global Level
The single-modal baseline aims to localize the temporal mo-
ment described in the sentence by using the single-modal
video input in both training and testing. Previous approaches
either solely emphasize semantic alignment between the
overall proposal and language (Lin et al. 2020; Zheng et al.
2022a,b) i.e., on a global scale, or specifically tackle the lo-
cal similarity among the video snippets and sentence (Tan
et al. 2021; Chen et al. 2020). However, local and global
alignment can capture the underlying semantic structure and
relationships between the sentence and video from different
perspectives. Both of them serve to facilitate multi-modal
knowledge transfer in the subsequent stages, thus establish-
ing a foundational framework for the ensuing processes of
local and global distillation. To this end, we propose to apply
contrastive learning to simultaneously cater to both local and
global scopes, formulating local-global contrastive learning.

Global contrastive learning. Our global contrastive learn-
ing module is similar to CPL network (Zheng et al. 2022b),
which encompasses a proposal generator, and a sentence re-
constructor. We use the proposal generator to generate a series
of proposal candidates. These proposal candidates are defined
by the center and width as (ck, wk) where k = 1 . . .K and
K is the number of proposal candidates. Then a transformer
encoder as in CPL extracts the visual feature for the k-th
proposal as vk and sentence feature as q, with each feature
vector having a dimension of d. The details of network archi-
tecture are omitted here and can be referred to (Zheng et al.
2022b). Then we randomly maskM words wmi (i = 1 . . .W )
in the sentence and enforce the reconstructor to reconstruct
the masked words based on the video proposals, where W
represents the number of words in the sentence. The recon-
struction error is formulated as

Lrec =
W∑
i=1

Lce(wmi ) (1)

The proposal that semantically matches the sentence query
is regarded as a positive proposal, while the whole video is
considered as a negative one. The positive proposal is as-
sumed to be with a lower reconstruction error of the masked
words than the negative proposal. We can heuristically se-
lect the positive proposal as the one k∗ with the minimum
reconstruction error

k∗ = argmink=1...KLrec[k] (2)
The global contrastive learning objective LBglobal is formu-
lated as

LBglobal = Lrec[k∗] + Lfullrec

+max(0,Lrec[k∗]− Lfullrec + ξfull)
(3)

where the reconstruction losses between the positive proposal
and full video are contrasted with a margin of ξfull and Lfullrec
denotes the reconstruction loss by the full video.

Local contrastive learning. Specifically, we first enhance
the local information of video snippet features V ∈ RL×d by
applying a sequence of convolutional layers accompanied by
the ReLU activation function, formulating context-enhanced
local features V̂ ∈ RL×d. Here L indicates the video snippet
number and d is the channel dimension of the video features.
Then we compute the semantic activation map m ∈ RL×1
which represents the semantic similarity between the video
snippet and sentence as

ml =
V̂l · q

||V̂l|| · ||q||
(4)

where ml signifies the value of semantic activation map for l-
th video snippet and q denotes the sentence feature. Because
the video is untrimmed, the foreground features relevant to
the query sentence are intertwined with unrelated background
elements. For a more accurate estimation of similarity be-
tween the i-th video and j-th sentence lij in a training batch,
we adaptively select the top LT values of mij

l and take their
average, formulated as

lij =

LT∑
l=1

m̃ij
l

LT
(5)

where m̃ij is a rearranged version of mij , sorted in descend-
ing order. Local contrastive learning encourages the model to
maximize the similarity between the positive video-sentence
pairs while minimizing the mismatched negative pairs. To
achieve this, we first compute the probability pi that the i-th
video matches to the i-th sentence

pi =
exp( liiτ )∑N
j=1 exp(

lij
τ )

(6)

where τ is the temperature hyperparameter and N denotes
the batch size. Then we can define the loss function of local
contrastive learning LBlocal as

LBlocal = −
1

N

N∑
j=1

log pj (7)

Local-global contrastive learning. The final objective
function for local-global contrastive learning is formulated as

LB = LBglobal + αLBlocal (8)
which jointly trains local and global contrastive learning.
Here α is a weight hyperparameter to balance LBglobal and
LBlocal. The final score for the proposal p with start and end
point (ps, pe) is computed from the local / global contrastive
learning branches as

sp = γ

pe∑
l=ps

mii
l

pe − ps + 1
− rp (9)

where γ is a weight hyperparameter, mii signifies the seman-
tic activation map of i-th video snippet and its query sentence,
and rp indicates the reconstruction error for proposal p as
defined in Eq. 1. The proposal with the maximum score from
the candidates is selected as the final prediction.



Multi-Modal Distillation at Local and Global Level
Assumed that one could train a powerful multi-modal model
for weakly-supervised temporal video grounding (detailed in
the subsection of “cross-modal mutual learning”). Thanks to
utilizing accessory information from different modalities, the
multi-modal model enjoys better localization accuracy and
generalization capability than the single-modal one. But it
also suffers from greater computational complexity and relies
on multiple input modalities which might not be available in
real-world applications. To alleviate this obstacle, we regard
the multi-modality model as a teacher model T and transfer
its multi-modal knowledge to a single-modal student model
S. The superiority of such multi-modal distillation lies in
its ability to train the student model using the supervision
of multiple modalities, while maintaining computational ef-
ficiency and taking single-modal input. Such a distillation
paradigm can effectively cope with the deficient supervision
obstacle for the weakly-supervised setting. We identify two
sorts of multi-modal knowledge that are specific to our task,
i.e., knowledge of temporal boundaries at the global level,
and knowledge of semantic activation maps at the local level.
And correspondingly, a multi-modal distillation algorithm
constituted by global-level distillation and local-level dis-
tillation is crafted to transfer these two sorts of knowledge
respectively.

Global-level distillation. In the weakly-supervised scenar-
ios, only the video-sentence pairs are provided for training,
and the ground truth temporal boundaries are not available.
The multi-modal teacher model enjoys the advantage of ac-
curacy and robustness in making global-level predictions of
temporal boundaries. Therefore, we treat the predictions from
the teacher model as pseudo-labels for the student model.
Assume that the teacher model selects the kT -th proposal
candidate as the prediction. In the design of the single-modal
baseline, we heuristically choose the proposal candidate with
minimum reconstruction loss as the potential ground truth
proposal. However, such selection is often inaccurate due
to the lack of sufficient training supervision. So for the stu-
dent model, instead, we explicitly set the prediction from the
teacher model i.e., kT -th proposal candidate as the pseudo
ground truth to train the student model. The global-level
distillation loss LSglobal is formulated as

LSglobal = Lglobal[kT ]
kT = argmaxks

T
k

(10)

where sTk is the prediction score for the k-th proposal can-
didate evaluated by the teacher model, and Lglobal is the
global contrastive learning loss function defined as in the
single-modal baseline.

Local-level distillation. The semantic activation mapm ∈
RL×1 is an intermediate output that estimates the similarity
of the query sentence and each snippet of video at the local
level. Unlike global-level knowledge of temporal boundaries,
the local-level knowledge of the activation map provides a
deeper understanding of the underlying data structure and
relationships between the language and video. Therefore,
mimicking the semantic activation map provides valuable
guidance to transfer the multi-modal knowledge from the

teacher model to the student model, resulting in improved
generalization capabilities for the student model without in-
puts of multi-modal videos. To achieve this, we devise the
local-level distillation loss LSlocal as a consensus of semantic
activation between the teacher and student model:

LSlocal = ϕ(mS ,mT ) (11)

where ϕ is the distance function of the activation map such
as L1 or L2 norm.

The final loss LS to train the single-modal student model
S consists of both the distillation loss and the original loss
for the baseline model, written as

LS = LB + β(LSglobal + αLSlocal) (12)

where β is a hyperparameter to balance the weight between
the distillation and baseline losses.

Cross-Modal Mutual Learning
This subsection describes the cross-modal mutual learning al-
gorithm for the teacher model of multi-modality. The teacher
model T digests inputs of multi-modal video features, de-
noted as V1, V2 ∈ RL×d. For the global contrastive module
and proposal generator, the video features of different modali-
ties are early fused by concatenation. For the local contrastive
module, we first generate the semantic activation maps for
the two modalities as m1,m2 ∈ RL×1 respectively. The final
semantic activation mapmT of teacher model T is integrated
as the average of the two modalities:

mT =
m1 +m2

2
(13)

Note that different modalities contain complementary infor-
mation and can thus compensate for the errors of each other.
To enable collaborative learning from different modalities,
we design a cross-modal mutual learning objective, where
discrepancies arising from one modality can be compensated
for through the integration of supplemental modalities. In
more detail, for the semantic activation map of one modality,
we regard the one from the other modality as a reference.
Then we enforce the consistency of the semantic activation
map and its reference, formulated as

Lmutual = ϕ(m1, δ(m2)) + ϕ(m2, δ(m1)) (14)

where ϕ represents the distance function of two vectors such
as L1 or L2 norm, and δ signifies gradient stopping operation.

Experiments
Datasets and Evaluation Metrics
We validate the performance of the proposed methods against
the state-of-the-art approaches on two large-scale datasets: 1)
Charades-STA (Gao et al. 2017) includes 9,848 videos of
daily indoor activities. The average length of a sentence query
is 8.6 words, and the average duration of the video is 29.8
seconds. It is originally designed for action recognition / lo-
calization (Sigurdsson et al. 2016), and later extended by Gao
et al. (Gao et al. 2017) with language descriptions for tem-
poral video grounding. 2) ActivityNet Captions (Krishna
et al. 2017) consists of 19,290 untrimmed videos, whose



Method Charades-STA ActivityNet Captions

R@0.3 R@0.5 R@0.7 R@0.1 R@0.3 R@0.5

SCN (Lin et al. 2020) 42.96 23.58 9.97 71.48 47.23 29.22
BAR (Wu et al. 2020) 44.97 27.04 12.23 − 49.03 30.73

MARN (Song et al. 2020) 48.55 31.94 14.81 − 47.01 29.95
RTBPN (Zhang et al. 2020b) 60.04 32.36 13.24 73.73 49.77 29.63

CCL (Zhang et al. 2020c) − 33.21 15.68 − 50.12 31.07
WSTAN (Wang et al. 2022) 43.39 29.35 12.28 79.78 52.45 30.01
LCNet (Yang et al. 2021) 59.60 39.19 18.87 78.58 48.49 26.33

VCA (Wang, Chen, and Jiang 2021) 58.58 38.13 19.57 67.96 50.45 31.00
CPL (Zheng et al. 2022b) 66.40 49.24 22.39 79.86 53.67 31.24

MMDist Teacher 70.11 54.72 26.00 82.89 58.53 32.98
MMDist Baseline 67.26 51.58 24.22 82.27 56.92 31.80
MMDist Student 68.90 53.29 25.27 83.11 58.69 32.52

Table 1: Comparisons with state-of-the-art methods on two large-scale datasets.

contents are diverse and open. The average duration of the
video is 117.74 seconds and the average length of the descrip-
tion is 13.16 words. There are 2.4 annotated moments with a
duration of 8.2 seconds in each video.

Following previous works (Gao et al. 2017; Lin et al.
2020; Zheng et al. 2022b,a), we adopt the evaluation metric
“R@m” to evaluate the grounding accuracy of our method.
Specifically, we calculate the Intersection over Union (IoU)
between the predicted temporal moment and the ground
truth. Then “R@m” is defined as the percentage of lan-
guage queries having correct grounding results with its IoU
being larger than m. As previous works, we report the re-
sults with m = {0.3, 0.5, 0.7} on Charades-STA dataset, and
m = {0.1, 0.3, 0.5} on ActivityNet-Captions dataset.

Implementation Details
We consider the RGB frames and optical flows as the multi-
modalities for the input videos. And I3D network (Carreira
and Zisserman 2017) and C3D network (Tran et al. 2015)
are used to extract RGB features for Charades-STA and
ActivityNet-Captions respectively. TV-L1 algorithm (Zach,
Pock, and Bischof 2007) and the I3D network are applied to
compute the optical flow features. For the query sentence, we
use the pre-trained GloVe word2vec (Pennington, Socher, and
Manning 2014) to extract word features. We set the maximum
description length to 20 on both datasets. The vocabulary size
is 8000 on ActivityNet-Captions and 1111 on Charades-STA
respectively. We mask 1/3 of words in the query sentence for
reconstruction. The dimensions of the hidden state d for both
language and visual features are set to be 256. The number
of video snippets L is resampled to 200 on both datasets.
We use the Adam optimizer (Kingma and Ba 2014) for the
model training with a batch size of 32. For multi-modal dis-
tillation, we first train the teacher model with 15 epochs with
a learning rate of 0.00035, and then distill it to the student
model with another 15 epochs with a learning rate of 0.0005.
The training of the single-modal baseline is independent of
the teacher / student models, where the number of training
epochs and learning rate for it are set to 15 and 0.0004 re-

Variants multi-modality distillation

MMDist Teacher 3 7
MMDist Baseline 7 7
MMDist Student 7 3

Table 2: The difference between the variants of our models.

spectively. The hyperparameter of α, β, and γ is set to 4.5
0.9, and 3.0 respectively.

Performance Comparisons
Our methods have three variant models i.e., a multi-modal
teacher model (MMDist Teacher), a single-modal base-
line (MMDist Baseline), and a single-modal student model
(MMDist Student). Table 2 presents their distinctions in the
training and testing settings. While MMDist Teacher takes
the multi-modal videos of RGB frames and optical flow as
input, the other two models only consume the input of single-
modal videos i.e., RGB frames. The MMDist Student differs
from the Baseline in that it exploits the distillation algorithm
to learn from the teacher model. We verify the capability
of the proposed methods on two widely-used datasets i.e.,
Charades-STA and ActivityNet-Captions. Table 1 illustrates
the performance comparison of our methods to previous meth-
ods of weakly-supervised TVG. All three proposed models
beat the state-of-the-art methods by a clear margin. We de-
note the previous best method Gaussian-based Contrastive
Proposal Learning (Zheng et al. 2022b) as CPL. The details
of the comparison are concluded as follows.
1) MMDist Baseline is better than CPL. The MMDist
Baseline model exclusively employs RGB frames from
videos and refrains from incorporating any multi-modal
videos throughout its training and testing phases. This ensures
a fair comparison with state-of-the-art methods such as CPL.
As indicated, MMDist Baseline consistently surpasses the
previous best methods in all evaluation metrics. For instance,
our proposed baseline achieves about 2 points higher than



Method R@0.3 R@0.5 R@0.7

Baseline w/o l-cont 65.83 50.54 23.31
Baseline w/o g-cont 60.42 44.36 20.80
Baseline full 67.26 51.58 24.22

Table 3: Ablation study on the baseline.

Method R@0.3 R@0.5 R@0.7

Student baseline 67.26 51.58 24.22
Student w/o l-dis 68.21 51.68 24.45
Student w/o g-dis 68.02 52.85 24.98
Student full 68.90 53.29 25.27

Table 4: Ablation study on our student model.

Method R@0.3 R@0.5 R@0.7

Teacher baseline 67.92 52.31 24.64
Teacher w/o mutual 69.73 53.86 24.76
Teacher full 70.11 54.72 26.00

Table 5: Ablation study on the teacher model.

CPL in the metric of “R@0.5” on Charades-STA dataset, and
3.5 points higher in “R@0.3” on ActivityNet-Captions. This
indicates that despite the absence of any utilization of multi-
modal videos during training, our local-global contrastive
learning baseline still exhibits better grounding ability.

2) MMDist Teacher surpasses CPL / MMDist Baseline.
The incorporation of multi-modal inputs consistently leads
to significant improvements across all evaluation metrics for
the MMDist Teacher. The improvements can be attributed
to the supplemental cues contained in multi-modal input
sources, helpful in aligning the semantics of the video and
the language query. MMDist Teacher demonstrates a 16.1%
improvement in the metrics of R@0.7 on the Charades-STA
and a 9.1% improvement in the metrics of R@0.3 on the
ActivityNet-Captions, compared to CPL. Also, the ground-
ing capability of MMDist Teacher is superior to MMDist
Baseline with the extra information from multi-modal videos.
This verifies the superiority of enhancing the model with
multi-modal videos and the effectiveness of the proposed
cross-modal mutual learning.

3) MMDist Student outperforms MMDist Baseline. Even
without using multi-modal videos as input, MMDist Student
outperforms MMDist Baseline significantly by the multi-
modal knowledge distilled from the teacher model. And the
grounding accuracy of MMDist Student also evidently sur-
passes CPL. We highlight that the MMDist Student model
achieves almost similar accuracy to Teacher in ActivityNet-
Captions where the student model is slightly better than
the teacher in R@0.1 and R@0.3 (about 0.2 points), while
slightly worse in R@0.5(about 0.4 points).

Ablation Studies
1) The effectiveness of local-global contrastive learning.
We investigate the effectiveness of each proposed module
on the model’s performance and conduct ablation studies
on the Charades-STA dataset. Table 3 explores the impact
of local contrastive learning and global contrastive learning.
When either local or global contrastive learning is removed,
the model’s performance declines significantly in each eval-
uation metric. This verifies the effectiveness of local-global
contrastive learning and the necessity of learning the seman-
tic alignment between the video and language at both local
and global levels. Moreover, the following ablation study
on multi-modal distillation further reveals that the semantic
activation maps from the local contrastive learning play an
important role in transferring the multi-modal knowledge
from the teacher to the student model.
2) The benefit of local-global multi-modal distillation.
This paper identifies two sorts of knowledge from the multi-
modal teacher i.e., temporal boundaries at the global level and
semantic activation maps at the local level. We correspond-
ingly craft the multi-modal distillation algorithm composed
of local and global level distillation to transfer them. Table 4
summarizes the ablation study on local and global distillation.
On the one hand, when removing either of them from the
full model, the performance decreases evidently. And espe-
cially when removing the local distillation part, the metric
of “R@0.5” drops more than 1.5 points. On the other hand,
both of them are still better than the “Student baseline”. Here
“Student baseline” denotes our single-modal baseline. This
underscores that both local-level and global-level distillations
are effective in leveraging the multi-modal training guidance.
3) The efficacy of cross-modal mutual learning. Here we
study the effectiveness of cross-modal mutual learning in
the teacher model. Table 5 presents the model accuracy after
discarding the loss function of mutual learning. All three
evaluation metrics values show about an evident drop. We
also design a multi-modal baseline for the teacher model i.e.,
“Teacher baseline”, which directly concatenates the multi-
modal features at the input level. The model’s localization
accuracy surpasses our single-modal baseline with a clear
margin, thanks to the supplementary information offered by
the multi-modal videos. However, the teacher baseline model
exhibits noticeable performance inferiority as it lacks the
capability for collaborative learning from multi-modality.

Conclusion
This paper for the first time exploits multi-modal videos for
weakly-supervised temporal video grounding. Firstly, we
propose a cross-modal mutual learning framework to collab-
oratively train a teacher model with the input of multi-modal
videos. Secondly, we devise local and global level distillation
algorithms to transfer this knowledge from the teacher model
to a single-modal student model. Moreover, we introduce
a local-global contrastive learning framework as a baseline
where the semantic contents of video and language are simul-
taneously aligned at both local and global scopes. Extensive
experiments demonstrate the effectiveness of our methods on
two widely-used datasets.
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