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Abstract

Natural language video localization plays a pivotal role in
video understanding, and leveraging weakly-labeled data is
considered a promising approach to circumvent the labor-
intensive process of manual annotations. However, this ap-
proach encounters two significant challenges: 1) limited in-
put distribution, namely that the limited writing styles of the
language query, annotated by human annotators, hinder the
model’s generalization to real-world scenarios with diverse vo-
cabularies and sentence structures; 2) the incomplete ground
truth, whose supervision guidance is insufficient. To over-
come these challenges, we propose an omnipotent distillation
algorithm with large language models (LLM). The distribution
of the input sample is enriched to obtain diverse multi-view
versions while a consistency then comes to regularize the con-
sistency of their results for distillation. Specifically, we first
train our teacher model with the proposed intra-model agree-
ment, where multiple sub-models are supervised by each other.
Then, we leverage the LLM to paraphrase the language query
and distill the teacher model to a lightweight student model by
enforcing the consistency between the localization results of
the paraphrased sentence and the original one. In addition, to
assess the generalization of the model across different dimen-
sions of language variation, we create extensive datasets by
building upon existing datasets. Our experiments demonstrate
substantial performance improvements adaptively to diverse
kinds of language queries.

Introduction

Natural language video localization (Gao et al. 2017) is an
important yet challenging task with a wide spectrum of ap-
plications in video understanding and analysis (Sreenu and
Durai 2019; Qi et al. 2021; Zhu et al. 2021; Bao et al. 2023).
The goal of this task is to temporally localize a video segment
(i.e., start and end time) that best corresponds to a query sen-
tence from untrimmed videos. Despite achieving impressive
results, the fully-supervised natural language video localiza-
tion (Liu et al. 2018; Zhang et al. 2019a,b, 2020a; Wang,
Ma, and Jiang 2020; Bao and Mu 2022) requires laborious
manual annotations of temporal moment boundaries, which
are unscalable to the real-world setting.
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Figure 1: Existing datasets suffer from limited sentence struc-
tures and vocabulary of natural language queries e.g., on
the Charades-STA dataset often with the structure of “sub +
pred + obj”. By exploiting temporal boundary consistency,
we propose a manual annotation-free omnipotent distillation
algorithm with LLM, adapting the localization ability from
a teacher model focusing on the vanilla language style to a
student model whose input sentence queries are with rich
language variations.

Due to this, the weakly-supervised setting has attracted
increasing attention in recent years (Gao et al. 2019; Mithun,
Paul, and Roy-Chowdhury 2019; Lin et al. 2020; Chen et al.
2020; Tan et al. 2021; Zheng et al. 2022a,b), where only
video-level descriptions are available during training. How-
ever, the performance of the existing weakly-supervised meth-
ods is still unsatisfactory and lags behind the fully-supervised
methods because the incomprehensive annotations do not
provide sufficient supervisory signals for training. Moreover,
the language queries provided by the human annotator often
suffer from limitations in writing styles, such as restricted
vocabulary and sentence structures. As a result, this hinders
the model’s capability to generalize to real-world applica-
tions, whose language queries showcase notable variations in
writing styles as well as cultural nuances.

To address these issues, we propose an Omnipotent Distil-
lation algorithm (OmniD) with the Large Language Model
(LLM) as shown in Fig 1. Specifically, we first devise a
bootstrapping learning framework to train a sophisticated



teacher model. The teacher model is composed of multiple
sub-models, each serving as an auxiliary model to address
the shortage of effective training guidance for the other sub-
models by providing pseudo-labels of temporal boundaries.
An intra-model consistency distillation is designed to explic-
itly compensate for the localization errors of each sub-model.
Instead of introducing extra manual annotations, such a de-
sign alleviates the deficient supervision problem by additional
computational costs during training.

Subsequently, we capitalize on the generation capability
of the large language model (Brown et al. 2020; Touvron
et al. 2023; OpenAlI 2023) to paraphrase each sentence query,
formulating extensive rephrased sentences with diversity in
vocabularies and sentence structures while maintaining the
original meaning. Given the semantic equivariance of para-
phrasing, the video moment described by the primary sen-
tence query and its paraphrased version should also exhibit
equivariance. To this end, we devise a semantic equivari-
ance distillation loss to distill the teacher model to a smaller
student model by encouraging the consistency of temporal
boundary predictions between the paraphrased sentence and
the untouched one. In this way, we transfer the localization
ability from a teacher model, which emphasizes a vanilla
language style, to a student model that engages with input
sentences featuring diverse and intricate language variations.

In addition, existing datasets such as Charades-STA (Gao
et al. 2017) and ActivityNet-Captions (Krishna et al. 2017)
suffer from restricted writing styles in terms of sentence
queries. For instance, the majority of the sentence queries in
the Charades-STA dataset share a similar sentence structure,
following the pattern of “subject-verb-object”, with passive
voice constructions being rare occurrences. To evaluate the
model’s generalization across various queries, we create to-
tally six variants of these datasets with rich vocabulary and
sentence structures.

Our contributions are summarized as follows: 1) To the
best of our knowledge, we are the first to exploit the large
language model for the task of natural language video lo-
calization. 2) We propose an omnipotent distillation algo-
rithm to tackle the challenges of ineffective supervision and
query multiformity. Intra-model consistency distillation and
semantic equivariance distillation are crafted to tackle these
challenges respectively. 3) To evaluate the generalization ca-
pability of the model across different dimensions of language
variation, we construct comprehensive datasets by expanding
upon existing ones. 4) Extensive experiments verify the su-
periority of the proposed methods in both performance and
adaptability compared to state-of-the-art approaches.

Related Works

Natural Language Video Localization. The task of natural
language video localization is initially introduced by Gao
et al. (2017) with the goal of identifying the start and end
time points of video moment based on a natural language
query and an untrimmed video. Gao et al. (2017) propose a
language-video localizer to identify the temporal boundary
for candidate video clips. A semantic matching reinforcement
learning framework is devised by Wang, Huang, and Wang

(2019) to reduce the large visual-semantic discrepancy be-
tween video and language. A cross-modal attention network
is proposed in (Liu et al. 2018) to highlight the essential part
of visual features or query contents. Bao, Zheng, and Mu
(2021) devise an event propagation network to localize video
moments that are semantically related and temporally coor-
dinated. While achieving promising localization accuracy,
the fully-supervised methods rely on the manual annotations
of the temporal boundaries which are labor-intensive and
subjective to label.

To solve this issue, weakly-supervised natural language
video localization has recently gain growing attention (Zheng
et al. 2022a.,b; Bao et al. 2024; Tan et al. 2021; Chen et al.
2020; Lin et al. 2020), where only the sentence query and the
paired video are required for training. Early works (Mithun,
Paul, and Roy-Chowdhury 2019; Tan et al. 2021) explore
using joint visual-semantic embedding and text-guided at-
tention to avoid laborious temporal boundary annotations. A
latent graph co-attention (Tan et al. 2021) is proposed in to
use fine-grained frame-by-word interactions to reason about
correspondences between possible pairs of frames. Chen
et al. (2020) devise a two-stage model to tackle the weakly-
supervised natural language video localization in a coarse-
to-fine manner where more precise start and end timestamps
of the retrieval results are obtained during the fine stage. To
the best of our knowledge, we are the first in the literature on
natural language video localization to use a large language
model to boost the adaptability of the localization model to
diversified language queries.

Knowledge Distillation. The approaches of knowledge
distillation, initially introduced in (Hinton, Vinyals, and
Dean 2015), serve the purpose of compressing and accel-
erating models. It achieves this by transferring the knowledge
amassed by a larger, intricate model to a smaller, more effi-
cient counterpart. In recent years, knowledge distillation has
seen expanded applications in various domains, including
zero-shot learning (Nayak et al. 2019; Micaelli and Storkey
2019), domain adaptation (Deng, Luo, and Zhu 2019; Chen
et al. 2019), and multimodal learning (Gupta, Hoffman, and
Malik 2015; Wang et al. 2020; Yu, Liu, and Chan 2021).
Different from these works applied in fully-/semi-supervised
scenarios, we capitalize on knowledge distillation to solve
the obstacles of insufficient supervision and lacking query
multiformity in the weakly-supervised setting.

Large Language Model. The large language models
(LLM) are transformer-based language models that contain
hundreds of billions or more parameters trained on massive
text data, such as GPT-3 (Brown et al. 2020), GPT-4 (OpenAl
2023), PaLM (Chowdhery et al. 2022) and LLaMA (Touvron
et al. 2023). LLMs not only show a significant performance
advancement but also exhibit strong capacities in in-context
learning (Brown et al. 2020), that are not presented in the
small-scale language models e.g., BERT (Devlin et al. 2019).
A milestone utilization of LLMs is ChatGPT! that harnesses
the LLMs from the GPT series for dialogue, showcasing an
impressive conversational ability. We employ the remarkable
paraphrasing capability of LLM to enhance the adaptability

"https://chat.openai.com/
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Figure 2: An overview of the proposed omnipotent distillation (OmniD) with LLM. Our method consists of 1) an LLM
paraphrasing module, 2) a teacher model via bootstrapping learning with intra-model consistency distillation, and 3) a student
model via semantic equivariance distillation with LLM. In the teacher model, intra-model supervision signals are utilized to
mutually reduce the problem of ineffective training guidance and explicitly compensate for the errors of each sub-model. Then
the student model improves the generalization ability across diversified language queries using the equivariance property of the
moment proposal before/after the sentence paraphrasing. The proposal candidates highlighted in dark green correspond to those

identified as positive predictions.

of natural language video localization models when dealing
with a domain shift of sentence queries. We highlight that
our approach eliminates additional annotation efforts to label
temporal boundaries, thanks to the proposed bootstrapping
distillation.

Omnipotent Distillation with LLM
Method Overview

Given a sentence query Q and an untrimmed video V), natural
language video localization aims to temporally localize the
temporal boundary b = (s, e) of a video moment described
by the query Q, where s and e denote the start and end time
point of the moment respectively. In the weakly-supervised
setting, the model requires the sentence-video pairs for train-
ing, without relying on the annotation of temporal boundaries.
However, the weakly-supervised model is often constrained
by the insufficient supervision dilemma due to incomplete
annotation. Moreover, language query in the existing datasets
lacks diversity in sentence structures and vocabulary. For in-
stance, the sentence queries in the Charades-STA dataset are
often with the structure of “sub + pred + obj”. This limitation
hampers the model’s capacity to achieve robust generaliza-
tion in real-world scenarios characterized by a diverse range
of language variations.

To overcome these difficulties, as shown in Fig 2, we pro-
pose Omnipotent Distillation (OmniD) with the large lan-
guage model by exploiting two sorts of consistency among

the temporal boundary predictions. 1) Intra-model consis-
tency: we first devise a bootstrapping learning algorithm
with an intra-model consistency distillation to train a teacher
model. This teacher model is constituted by multiple sub-
models, where each sub-model serves as an assistive model to
collaboratively provide training guidance to the other model,
alleviating the ineffective supervision constraint. 2) Semantic
equivariance consistency: we capitalize on the LLM (Ope-
nAI 2023) to paraphrase the sentence query, where a wide
range of rephrased sentences are formulated with diversity
in vocabularies and sentence structures while keeping the
semantic meaning unchanged. The localization capability of
the teacher model is then transferred into a smaller, more
efficient student model. This is achieved by encouraging the
temporal boundary prediction of paraphrased sentences from
the student model to be aligned with the prediction from the
teacher model with the unaltered sentence query.

Sub-Model Construction

We use the CPL model (Zheng et al. 2022b) as the basic
network architecture for the sub-model, which comprises a
proposal generator and a sentence reconstructor. Here we take
a brief overview of the network architecture and more details
can be referred to (Zheng et al. 2022b). Specifically, the
sentence query Q and untrimmed video V are first encoded to
feature representation ¢ € R¥@*? and v € RV ¥4 by a list
of multi-head attention layers respectively. Then another list
of cross-modal attention layers regress K proposal candidates



from g and v as {by, = (sx,ex)} (k =1... K). We randomly
mask M words {w; } in the sentence and enforce the sentence
reconstructor to reconstruct the masked words from the k-th
proposal candidate as 1¥. The cross-entropy loss can then be
used to evaluate the reconstruction correctness as

M
Lreelk] = Lee(wi, i) )
=1

Assume that the £*-th proposal candidate is selected as the
positive proposal that matches the sentence query. A ranking
loss L, qnk is further applied as in (Zheng et al. 2022b) to
guarantee that the positive candidate k* has a reconstruction
loss smaller than the hard negative candidates by a specific
margin. The final loss function is written as:

Esub == Erec[k*} + ﬁrank[k*] (2)

In the weakly-supervised setting, the annotations of tem-
poral boundaries are not available, and thus the ground-
truth positive proposal is unknown for training. Previous
works (Lin et al. 2020; Zheng et al. 2022a,b) heuristically
select the one in the proposal candidates with the smallest
reconstruction loss as positive proposal k*, formulated as

k* =argming_; g Lreclk] 3)

However, such selection is inherently prone to errors due to
the shortage of adequate training guidance. To cope with this
barrier, we propose bootstrapping learning with intra-model
consensus supervisory signals as illustrated in the following
subsection.

Teacher Model via Bootstrapping Learning with
Intra-Model Consistency Distillation

The teacher model T is constituted by multiple sub-models,
where each sub-model serves as an assistive model to mutu-
ally provide training guidance to the other model and allevi-
ate the inadequate supervision issue. Specifically, the teacher
model consists of N sub-models. For the i-th sub-model,
each of all other sub-models is considered a reference model,
which serves as a source of pseudo-labels for the temporal
boundaries. We then leverage the predictions of (N — 1)
sub-models to create a consensus-based pseudo-label for -th
sub-model, enhancing its the accuracy and reliability.
Assume that the ¢-th sub-model predicts P proposal can-
didates that correspond to the sentence query as b;; where

7 = 1... P and the k*-th proposal by, is chosen as its pre-
diction for i-th sub-model. The consensus score c;; for j-th
proposal candidate of i-th sub-model is then determined as
the average intersection over union (IoU) of (N — 1) sub-
models, written as:

N

ciy =y, olbiybr) “)

k=1,k#i

where o is the IoU operator.

Instead of heuristically choosing by -th model as Eq. 3
as pseudo-labels for training which is easy to prone errors,
we exploit the consensus scores from the other (N — 1) sub-
models to determine the pseudo-label for ¢-th model. In more

detail, the final pseudo-label for ¢-th sub-model is determined
as the proposal candidate with the largest consensus score
across the P proposal candidates, written as

pi = argmax(c;;) (5)
where p;-th proposal candidate of :-th model is chosen as the
positive one.

The loss function of intra-model consistency distillation
for bootstrapping learning can then be formulated as

N

£Z;Ot = Z Erec[pi] + Erank [Pz] (6)

i=1

In this way, intra-model supervision signals are leveraged
to jointly relieve the problem of ineffective supervision and
explicitly compensate for the errors of each sub-model. The
final prediction b7 of the teacher model is determined by
selecting the one with the largest consensus score of the N

sub-models:
si= »_ olbi,by)
k=1 ket 7
" = B[argmaxizl...Nsi}
where o represents the }OU operator, and B[k] denotes the
selection of the entry in b with the k-th index.

Semantic Equivariance Distillation with LLM

Given a natural language query Q, we request the large lan-
guage model GPT-3.5 (OpenAl 2023) to paraphrase Q as Q.
The paraphrased Q' maintains the intended semantic mean-
ing while enjoying rich diversity in writing styles such as
vocabularies and sentence structures. The prompts that guide
the large language model with context information on para-
phrasing are included in the supplementary materials (which
can be referenced in the arXiv version of this paper).

Given the semantic equivariance of paraphrasing, the video
moment described by both the primary sentence query and its
paraphrased version should also exhibit equivariance. While
ground-truth temporal boundaries are absent in the weakly-
supervised setting, we exploit this equivariance property to
transition the knowledge of the teacher model to a lightweight
student model S, and further enable its versatile ability in
language understanding.

Assume that the student model predicts K proposal can-
didates {b},} for the paraphrased query Q’, the localization
result of the student model with Q’ is encouraged to be ac-
cordant to the teacher model with the unaltered query Q.
The semantic equivariance distillation loss function for the
student model S is then formulated as

['S = »Crec[ps] + »Crank [PS] (8)
where the pseudo-label pS is determined by choosing the
proposal from {b} } of Q' with the highest IoU value to the
prediction of the teacher model as

S; =0 (ZA)Z, bT)
S ©))
p° = argmax;s;
During inference, the teacher model is dropped and only the
student model is utilized to localize the video moment based
on the given language query.



Dataset Expansion

Charades-STA (Gao et al. 2017) and ActivityNet-Captions
(Krishna et al. 2017) are two widely-used datasets in the task
of natural language video localization. These datasets suffer
from restricted writing styles in terms of sentence queries. For
instance, the majority of the sentence queries in the Charades-
STA dataset exhibit a consistent sentence structure, adhering
to the “’subject-verb-object” pattern. Additionally, passive
voice constructions are infrequent occurrences in both the
Charades-STA and ActivityNet-Captions. In a real-world
setting, however, it is common to use assorted expressions to
convey the same semantics of a video moment.

To assess the model’s generalization capability across vari-
ous types of queries, we extend the testing data of Charades-
STA and ActivityNet-Captions by creating three variants
that encompass various writing styles as follows. i) Sentence
structure variant (SS): This variation focuses on changing
sentence structures while being prone to maintaining the orig-
inal vocabulary. ii) Vocabulary variant (VO): In this variant,
we modify only the vocabulary used in the sentences while
endeavoring to keep the sentence structures intact. iii) Hybrid
variant (HY): Both the vocabularies and sentence structures
are modified in this variant to introduce a combined effect.

To create these variant datasets, we first design a list of
different prompts (available in the supplementary materi-
als) and request the large language model (OpenAl 2023) to
paraphrase the natural language sentence. Then we manually
check the semantic equivariance between the untouched sen-
tence and the paraphrased one in the testing dataset. These
variations allow us to examine the model’s performance
across different dimensions of language variation, providing
a comprehensive assessment of its generalization capabilities.

Experiments
Datasets

We validate the effectiveness of the proposed approach to the
state-of-the-art methods on two benchmark datasets, namely
Charades-STA (Gao et al. 2017) and ActivityNet-Captions
(Krishna et al. 2017). Furthermore, we introduce six vari-
ant datasets by building upon the vanilla Charades-STA and
ActivityNet-Captions datasets, which enables us to evaluate
the model’s localization accuracy over diverse sentences with
varying structure and vocabulary. The details of the datasets
are given as follows.

1) Charades-STA (Gao et al. 2017) comprises 9,848 videos
showcasing daily indoor activities. The sentence queries
within the original dataset exhibit an average length of 8.6
words. And the videos possess an average duration of 29.8
seconds. This dataset is initially designed for action recog-
nition / localization (Sigurdsson et al. 2016), and subse-
quently extended by Gao et al., (Gao et al. 2017) with lan-
guage descriptions for natural language video localization.
As illustrated in the previous subsections of “Dataset Expan-
sion”’, we introduce three variation datasets: Charades-STA
SS, Charades-STA VO, and Charades-STA HY. In each variant
dataset, we undertake paraphrasing of the original sentence
query three times, generating distinct paraphrased sentences
based on the specified criteria. As a result, the total number

of sentences in the variation dataset increases by a factor of
9 compared to the original one. The detailed statistics of the
variant datasets are included in the supplementary materials
of our arXiv version.

2) ActivityNet Captions (Krishna et al. 2017) is comprised
of 19,290 untrimmed videos, encompassing a wide range
of diverse and open visual content. The average duration
of the video is 117.74 seconds and the average length of
the description is 13.16 words in the original dataset. There
are 2.4 annotated moments with a duration of 8.2 seconds
in each video. Similar to the Charades-STA variants, three
variation datasets are introduced i.e., ActivityNet-Captions
SS, ActivityNet-Captions VO, and ActivityNet-Captions HY
with rich language multiformity. The total sentence number
is nine times as the one in the vanilla dataset. And we provide
more details of the variations in the supplementary materials.

Evaluation Metrics

Following previous works (Gao et al. 2017; Lin et al. 2020;
Zheng et al. 2022b), we adopt the metrics of “R@m” for eval-
uation. Specifically, we calculate the Intersection over Union
(IoU) between the localized temporal moment and the corre-
sponding ground truth. “R@m” is defined as the percentage
of language queries having correct localization results, where
the localization is correct if its IoU is larger than m. As prior
works, we report the results with m = {0.3,0.5,0.7} on
Charades-STA and its variations, and set m = {0.1,0.3,0.5}
on ActivityNet-Captions and its variations.

Implementation Details

Following prevailing works, we use I3D network (Car-
reira and Zisserman 2017) and C3D network (Tran et al.
2015) to extract video features for Charades-STA and
ActivityNet-Captions respectively. We employ pre-trained
GloVe word2vec embeddings (Pennington, Socher, and Man-
ning 2014) to extract sentence features. We set the maximum
description length to 20 on both datasets. The dimensions of
the hidden state for both language and visual features are set
to 256. The number of video snippets is resampled to 200
on both datasets. We use the Adam optimizer (Kingma and
Ba 2014) for training with a batch size of 32. The sub-model
numbers NV in the teacher model are set to 3. We first train
the teacher model for 15 epochs, and subsequently distill it
to the student model for another 15 epochs. The learning rate
is set to 0.0005 for Charades-STA dataset and 0.00035 for
ActivityNet-Captions dataset, respectively.

Performance Comparisons

1) Charades-STA variant datasets. Table 1 summarizes
the localization accuracy of the proposed method OmniD
against state-of-the-art approaches on three variant datasets
of Charades-STA, i.e., Charades-STA SS, Charades-STA VO,
and Charades-STA HY. In addition to the standard versions,
we further enhance the previous methods with LLM para-
phrasing for a fair comparison (indicated by a check mark
in the respective column). To achieve this, we carefully re-
implement each of these methods using their officially re-
leased code and incorporate training with the additional nat-



Charades-STA SS

Charades-STA VO

Charades-STA HY

Method LLM

R@0.3 R@0.5 R@(0.7 R@03 R@0.5 R@0.7 R@0.3 R@05 R@0.7

SCN (Lin et al. 2020) 55.51 22.26 6.51 53.24 21.45 5.70 54.27 22.42 6.27
CPL (Zheng et al. 2022b) X 53.74 38.78 17.54 46.69 33.85 15.47 48.64 35.32 15.67
OmniD (Ours) 56.91 41.41 18.64 49.78 35.66 16.47 51.80 36.57 16.81

SCN (Lin et al. 2020) 57.81 24.93 7.05 58.97 25.71 8.13 56.64 23.04 6.83
CPL (Zheng et al. 2022b) v 60.30 44.74 20.70 58.23 42.95 19.60 59.44 43.96 20.32
OmniD (Ours) 65.66 49.09 22.93 64.78 48.63 22.30 65.09 49.04 22.83

Table 1: Comparisons with state-of-the-art methods on three Charades-STA variation datasets.

ActivityNet-Captions SS

ActivityNet-Captions VO

ActivityNet-Captions HY

Method LLM

R@0.]1 R@0.3 R@0.5 R@0.1 R@0.3 R@05 R@0.1 R@03 R@0.5

SCN (Lin et al. 2020) 74.29 46.46 26.92 74.41 46.44 26.96 74.36 46.51 27.01
CPL (Zheng et al. 2022b) X 73.03 47.90 26.86 73.58 47.87 27.13 73.19 47.98 26.94
OmniD (Ours) 72.79 48.48 27.86 74.95 48.55 28.83 72.60 47.98 28.30
SCN (Lin et al. 2020) 74.87 46.95 28.05 74.78 47.14 28.27 74.87 47.14 28.09
CPL (Zheng et al. 2022b) v 74.71 47.45 26.47 74.64 47.26 26.52 74.75 47.37 26.57
OmniD (Ours) 78.07 51.06 28.50 81.73 52.85 29.53 79.62 51.84 28.99

Table 2: Comparisons with state-of-the-art methods on three ActivityNet-Captions variation datasets.

ural language queries paraphrased LLM. Generally, the uti-
lization of LLM paraphrasing can boost the generalization
capabilities of these methods when dealing with sentences
exhibiting diverse variations. However, it is worth noting
that such enhancements might be modest and occasionally
unstable for their methods, For instance, LLM paraphrasing
results in a mere one-point improvement for SCN within the
Charades-STA HY dataset. In contrast to these approaches,
the localization accuracy of our OmniD consistently and
markedly improves with LLM paraphrasing. This improve-
ment is attributed to the enforced consistency with semantic
equivariance distillation, which sets our method apart.

2) ActivityNet-Captions variant datasets. Table 2 shows
the performance comparison between the OmniD and the
existing methods on ActivityNet-Captions SS, ActivityNet-
Captions VO, and ActivityNet-Captions HY. Notably, Om-
niD consistently outperforms the state-of-the-art methods by
a significant margin. For instance, our OmniD method sur-
passes CPL by more than 3 point on the ActivityNet-Captions
VO dataset with LLM paraphrasing, in terms of “R@0.5”.
Moreover, the enhancement in performance achieved by in-
corporating LLM into OmniD is notably more consistent and
pronounced compared to the effects observed when adding
it to SCN and CPL. This demonstrates the efficacy of the
proposed omnipotent distillation technique and the benefit of
exploiting the semantic equivariance for the distillation.

3) Vanilla Charades-STA and ActivityNet-Captions
datasets. We compare the localization accuracy on the origi-
nal Charades-STA and ActivityNet-Captions datasets in Ta-
ble 3. To ensure a fair comparison with prior research, where
metrics are reported without the use of LLMs, we discard
the LLM paraphrasing from our OmniD models and only
use the original sentences for the distillation. Remarkably,

both OmniD Teacher and Student models surpass state-of-
the-art methods with a clear margin on both datasets. For
instance, OmniD student model achieves more than an 8%
enhancement on the Charades-STA dataset compared to the
leading previous method CPL in value of R@0.7. And our
teacher model is more than 5 points higher than CPL on the
ActivityNet-Captions dataset in terms of R@0.3.

Ablation Studies

To investigate the effectiveness of the proposed algorithms,
here we conduct ablation studies on the Charades-STA
dataset and its variations.

1) The benefit of semantic equivariance distillation. Ta-
ble 4 showcases the advantages of semantic equivariance
distillation across three variant datasets of Charades-STA.
We investigate the impact of degrading semantic equivari-
ance distillation in the following two aspects: 1) Whether to
use LLM: if we choose not to utilize the sentence queries
paraphrased by the LLM, then we directly employ the origi-
nal, unaltered sentences for the student model. 2) Whether
to use the distillation loss Eq. 8: when we do not use Eq. 8,
and instead we replace by the heuristic loss Eq. 2. The results
indicate that omitting either of them (marked by a cross sym-
bol in the respective column) noticeably leads to a decline in
localization capability across all three variant datasets.

2) The advantage of intra-model consistency distillation
learning. In this subsection, we delve into the benefits of
bootstrapping learning through ablation studies. The sum-
mary of the ablation studies on the teacher model’s local-
ization accuracy on the original Charades-STA dataset is
presented in Table 5. We refer to the complete teacher model
as “full”, the teacher model without intra-model consistency
distillation as “full w/o icd”, and the teacher model reduced



Charades-STA

ActivityNet Captions

Method

R@0.3 R@0.5 R@0.7 R@0.1 R@0.3 R®@0.5

SCN (Lin et al. 2020) 42.96 23.58 9.97 71.48 47.23 29.22
BAR (Wu et al. 2020) 4497 27.04 12.23 — 49.03 30.73
MARN (Song et al. 2020) 48.55 31.94 14.81 — 47.01 29.95
RTBPN (Zhang et al. 2020b) 60.04 32.36 13.24 73.73 49.77 29.63
CCL (Zhang et al. 2020c) — 33.21 15.68 — 50.12 31.07
LCNet (Yang et al. 2021) 59.60 39.19 18.87 78.58 48.49 26.33
VCA (Wang, Chen, and Jiang 2021)  58.58 38.13 19.57 67.96 50.45 31.00
WSTAN (Wang et al. 2022) 43.39 29.35 12.28 79.78 52.45 30.01
CPL (Zheng et al. 2022b) 66.40  49.24 22.39 79.86 53.67 31.24
OmniD-Teacher (Ours) 69.13 53.77 24.70 83.41 59.15 32.34
OmniD-Student (Ours) 68.30 52.31 24.35 83.24 57.34 31.60

Table 3: Comparisons with state-of-the-art methods on the vanilla datasets.

LLM Distill Charades-STA SS

Charades-STA VO

Charades-STA HY

R@0.3 R@0.5 R@0.7 R@0.3 R@0.5 R@07 R@03 R@0.5 R@0.7
v v 65.66  49.09 2293 6478 48.63 2230 65.09 49.04 22.83
v X 61.18  44.65 19.77  59.07  43.15 19.53  60.75  44.55 20.23
X v 56.91 41.41 18.64  49.78 35.66 1647  51.80  36.57 16.81
X X 54.43 39.98 18.80  47.25 34.53 1642  49.28 35.92 16.80
Table 4: Ablation studies of equivariance distillation on Charades-STA variation datasets.
Method R@03 R@0.5 R@0.7 %00 20 4025 4922
49.0
full 69.13  53.77  24.70 §
full w/o icd 6748  51.68  23.50 T 48.0 //m
full w/o bootstrap  66.50 50.44 22.86 2 470
1657
Table 5: Ablation studies on intra-model consistency. 460 1 2 3 4 5

to a single sub-model without bootstrapping learning as “full
w/o bootstrap.” When dropping intra-model consistency dis-
tillation loss, we find that the performance decreases about
one to two points. Upon removing the intra-model consis-
tency distillation loss i.e., “full w/o icd”, we observe a decline
of approximately one to two points in each evaluation metric.
This underscores that the enhancement of the teacher model
stems not only from the ensemble effect, but further from the
mutual learning among the sub-models. Moreover, downgrad-
ing the bootstrapping learning to a single sub-model results
in a drop of around 3 points. This also verifies that the con-
sensus of the NV sub-models’ prediction can provide useful
training guidance for the single sub-model.

3) The influence of hyperparameter /N in bootstrapping
learning. The teacher model 7 contains N sub-models, with
the hyperparameter /N playing a crucial role in the boot-
strapping learning. Fig 3 presents the impact of N on the
T’s localization accuracy on vanilla Charades-STA. As N
increases, the average of “R@m” where m={0.3, 0.5, 0.7}
gradually becomes larger when N < 3. However, beyond
N > 3, the model’s accuracy reaches saturation. This can

N

Figure 3: Ablation studies on the sub-model numbers N.

be attributed to the fact that there is little additional comple-
mentary information provided as the number of sub-models
is sufficient.

Conclusion

This paper for the first time leverages the large language
model (LLM) for weakly-supervised natural language video
localization. We propose omnipotent distillation with LLM to
resolve the key obstacles of this task. Firstly, a bootstrapping
learning framework with intra-model consistency is devised
to alleviate the insufficient supervision limitation. Secondly,
we capitalize on the LLM to paraphrase the language query
and then distill the teacher model to an efficient student model
using the semantic equivariance property of paraphrasing. To
assess the generalization of the model across diverse queries,
we create extensive datasets with different types of variations.
Experiments demonstrate our method achieves state-of-the-
art results in both adaptability and performance.
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